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Abstract

We evaluate the unintended environmental impacts of Special Economic Zones (SEZs)—a place-
based policy aimed at promoting economic development in India—on firms’ energy use and
carbon emissions. Using detailed firm-level energy data and a spatial regression discontinu-
ity difference-in-differences (RD-DiD) design, we find that firms located within SEZs reduce
their carbon emissions by 25% compared to comparable firms outside SEZs. This reduction is
primarily driven by a shift from conventional fuels to lower-carbon renewable energy sources,
rather than by a decline in output. Guided by a conceptual framework, our heterogeneity
analysis shows that emission reductions are more pronounced among larger firms and non-
manufacturing firms with greater flexibility in energy substitution, and firms located in regions
with better access to clean energy infrastructure.
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1 Introduction

Can economic growth be achieved while sustaining the environment? This long-standing question

sits at the heart of debates on sustainable development, where economic expansion and environ-

mental protection often appear at odds. Increased production typically leads to higher energy

consumption and pollution, yet development can also drive investment in energy-efficient and

cleaner technologies. This question is especially critical for developing countries, which accounted

for 95% of increase in the global emissions over the past decade and 75% of global greenhouse gas

emissions in 2023, fueled by rapid industrialization and economic growth (Climate Leadership

Council 2024).

We shed light on this critical question by examining the unintended environmental conse-

quences of a large-scale place-based policy originally designed to spur economic growth—India’s

Special Economic Zones (SEZs). Like many other place-based policies widely adopted in emerging

economies to foster regional development (Das and Barua 1996; Fleisher, Li, and Zhao 2010; Rothen-

berg, Wang, and Chari 2025), SEZs in India were explicitly created to stimulate employment, drive

economic growth, and facilitate globalization. Established in the 1960s and significantly expanded

in 2005, the SEZ program offers substantial tax incentives to firms operating within designated

areas, providing a financial impetus for industrial growth. Empirical evidence indicates that, in

many aspects, SEZs have successfully driven structural transformation and economic growth in

India (Hyun, Ravi, et al. 2018; Gallé et al. 2024). However, this success prompts a critical question:

Have these same policies also led to increased energy consumption and carbon emissions at the

firm level? This question is particularly pressing given that India has emerged as one of the world’s

top three carbon emitters, alongside China and the United States (Investopedia 2024). Notably, the
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industrial sector plays a central role in this trend, accounting for 24.5% of India’s total greenhouse

gas emissions in 2023 (International Energy Agency 2021).

While SEZs are designed to promote economic activity, their environmental impact can be

far-reaching. On one hand, increased industrial output may lead to greater energy demand and

emissions. On the other, the financial and institutional support provided by such policies could

incentivize firms to adopt greener, more energy-efficient technologies (Barrows and Ollivier 2018).

The net environmental impact ultimately depends on a range of contextual factors, including

the availability of clean energy infrastructure, firms’ technological capabilities, and the regulatory

environment. Our study investigates whether SEZs in India have primarily fueled carbon emissions

or, conversely, supported a transition toward cleaner industrial production. Understanding these

dynamics is essential for designing future development strategies that balance economic growth

with environmental sustainability—both in India and in other developing economies pursuing

similar policy solutions.

Quantification of the carbon footprint of place-based policies presents some challenges. First,

identifying comparable areas that were not targeted by the policy to serve as counterfactuals is

inherently difficult for any place-based policy. Second, obtaining high-quality firm-level data on

behaviors that contribute to emissions is another major hurdle. Detailed and reliable data on

how firms operate and implement changes in response to place-based policies is often scarce. We

address these challenges by leveraging rich spatial and temporal variations in the implementation

of India’s Special Economic Zones. Additionally, our analysis is based on high-quality firm-level

data that provide detailed insights into production, sales, and energy use. These data allow us to

directly estimate each firm’s carbon emissions and investigate the underlying mechanisms, such as

energy efficiency improvements, changes in fuel composition, and shifts in production processes.
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To evaluate the effects of Special Economic Zones (SEZs), we employ a combined Spatial

Regression Discontinuity (RD) and Difference-in-Differences (DiD) methodology. Following Görg

and Mulyukova (2024), we use detailed documentation on SEZ locations and sizes to construct

treatment buffers that match official records, allowing us to approximate treatment assignment for

firms located within SEZ boundaries. To construct counterfactuals, we pair each treated firm with

control firms located within 10 kilometers of an SEZ but outside the treatment buffer, using a K-

means clustering algorithm based on pre-specified observed characteristics. To mitigate potential

misclassification due to boundary imprecision, we exclude firms located within 2 kilometers of the

SEZ boundary from the analysis. We then compare changes in carbon emissions before and after

SEZ notification within each matched pair.

Although Special Economic Zones were not initially designed with environmental objectives,

our findings reveal a significant 25% reduction in carbon emissions among firms within these zones

compared to similar counterparts outside of SEZs following policy implementation. Our event

study indicates no significant pre-trend, and the SEZ-induced decline in carbon emissions only

becomes evident three years after SEZ notification. When examining the underlying mechanisms,

we find no evidence of a decline in output among treated firms; on the contrary, there is suggestive

evidence of increased production. The observed reduction in emissions is instead driven by a

considerable rise in emissions from renewable energy sources and a statistically significant decline

in emissions from conventional energy sources, indicating a shift toward cleaner energy use. Our

results are robust across various model specifications, distance boundaries, the application of a

staggered DiD specification, and the use of propensity score matching.

To further investigate the underlying mechanisms, we develop a conceptual framework in which

manufacturing and non-manufacturing firms choose between cleaner and conventional energy
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sources. In the model, cleaner energy entails a fixed installation cost and features typically lower

marginal costs compared to dirtier alternatives (Allcott and Greenstone 2012; Covert, Greenstone,

and Knittel 2016). Moreover, by distinguishing between manufacturing and non-manufacturing

firms, recognizing differences in their energy consumption mixes and the substitution patterns

across different energy types (Stern 2012), the model predicts that the incentives provided by SEZs

will have larger effects in (i) sectors with greater elasticity of substitution between energy types,

(ii) locations with lower entry barriers to cleaner energy, and (iii) firms with greater capacity to

afford the fixed costs of adopting cleaner energy.

Our empirical evidence, derived from heterogeneity analyses across regions, industrial sectors,

and firm types, aligns with these predictions. First, consistent with the model, we find that

SEZs have more pronounced effects in the non-manufacturing sector, where firms exhibit a higher

elasticity of substitution between energy types. This is mainly because non-manufacturing firms

primarily rely on electricity, which can be more easily sourced from cleaner alternatives. In

contrast, manufacturing firms depend on a more diverse energy mix, including fossil fuels such

as oil, natural gas, and coal—energy sources that are harder to replace with cleaner options.

Second, we find that SEZs lead to significant reductions in carbon emissions in regions where

renewable energy is rapidly expanding and constitutes a substantial share of the local energy

supply—conditions that reduce the entry barriers to cleaner energy. Finally, we show that larger

firms and major emitters who are more capable of paying upfront investment costs, reconfiguring

their energy use, and have greater incentives to reduce their emissions are more responsive to

SEZs’ incentives.

Our study contributes to the extensive literature on place-based policies, particularly the emerg-

ing strand examining their environmental consequences. While the effectiveness of place-based
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policies remains widely debated—with mixed evidence from both developed and developing

countries (Neumark and Simpson 2015)1—evidence from India generally points to positive im-

pacts (Chaurey 2017; Shenoy 2018; Hasan, Jiang, and Rafols 2021; Gallé et al. 2024)2. Most existing

studies emphasize economic outcomes, with relatively less attention given to environmental exter-

nalities—an increasingly important dimension in light of growing concerns over climate change

(Jayachandran 2022).

While research on the environmental impacts of place-based policies has advanced—particularly

in the context of China (Yu and Zhang 2022; Wang et al. 2023; Song et al. 2023; Wen, Liu, and

Huang 2023; Fan et al. 2023)—empirical evidence from other settings remains relatively scarce.

A notable exception is Garg and Shenoy (2021), who find that tax incentives for industrial and

infrastructure development in the newly created state of Uttarakhand had no significant effect on

forest cover. Our study addresses this gap by providing novel, large-scale evidence that SEZs,

though not explicitly designed with environmental goals in mind, can lead to meaningful reduc-

tions in firm-level carbon emissions. To our knowledge, this is among the first studies to quantify

the environmental impacts of place-based policy at the firm level in the context of developing

countries.

This study also contributes to the broader debate on balancing economic growth with environ-

mental sustainability, often framed by the Environmental Kuznets Curve hypothesis (Grossman

and Krueger 1995). By analyzing the environmental impacts of Special Economic Zones (SEZs),

a prominent and widely used policy tool for industrial development, we offer new insights into

1Some policies have been shown to successfully stimulate economic activity and promote regional development (Kline
and Moretti 2014; Busso, Gregory, and Kline 2013; Ehrlich and Seidel 2018; Wang 2013; Lu, Sun, and Wu 2023), while
others have yielded limited or no effects (Neumark and Kolko 2010; Gobillon, Magnac, and Selod 2012; Rothenberg,
Wang, and Chari 2025).

2An exception is Görg and Mulyukova (2024), who find heterogeneous effects: productivity declined in publicly-owned
SEZs, while firms in privately-owned SEZs experienced productivity gains.
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how growth-oriented policies can yield environmental benefits. Our findings reveal that SEZs in

India, a major carbon emitter, have inadvertently reduced firms’ carbon emissions, particularly

when supported by policies and technological advancements that facilitate a shift to cleaner en-

ergy sources. These insights have significant policy implications, particularly as SEZs and similar

place-based interventions are widely adopted in both developing and developed countries. Our

results suggest that, under the right conditions, such policies can serve a dual purpose: promoting

economic development while supporting climate objectives. In doing so, this study contributes

to the growing literature on carbon abatement and sustainable development (e.g., Barbier 2019;

Greenstone and Jack 2020; Gillingham and Stock 2018; Colmer et al. 2024; Dechezleprêtre, Nachti-

gall, and Venmans 2023; Gugler, Haxhimusa, and Liebensteiner 2021), emphasizing the potential

to integrate economic and environmental goals in policy design.

The rest of this paper is organized as follows. Section 2 presents the background and history

of the SEZ program in India. Section 3 describes the main data sources and presents summary

statistics. Section 4 introduces the empirical strategies we adopt. Section 5 discusses our main

empirical results and robustness exercises. Section 6 builds a conceptual framework that illustrates

potential underlying mechanisms. Section 7 explores the mechanisms and tests the predictions of

the model. Lastly, Section 8 concludes.

2 Background

SEZs in India India has undergone a period of rapid economic transformation marked by trade

liberalization, rising foreign investment, and expanding service sectors since early 2000s. Despite

these positive trends, the country continued to struggle with substantial infrastructure deficits,

regulatory complexity, and regional disparities in economic development (Panagariya 2008). In
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response, policymakers increasingly turned to targeted interventions to foster industrial growth

and enhance economic performance. One such approach involved the use of place-based poli-

cies aimed at improving the business environment and catalyzing private investment in targeted

regions.

India has a long history of utilizing place-based policies. It is one of the first countries in

Asia to introduce the Export Processing Zones (EPZs) in the 1960s, a place-based policy aimed at

promoting exports and enhancing economic development (Ministry of Commerce and Industry,

Government of India 2025; Görg and Mulyukova 2024). Until the 2000s, these zones were few

in number and were exclusively owned and managed by the central government. However, the

lack of modern infrastructure, unstable fiscal policy, and administrative and bureaucratic delays

prompted the need for reform for businesses to develop and thrive (World Bank 2005; Ministry

of Commerce and Industry, Government of India 2025). In 2005, the Special Economic Zones Act

was passed, allowing for private investment and a more flexible environment with administrative

and fiscal benefits. The privatization of these economic zones drastically increased the number of

SEZs (see Figure A.1).

According to the SEZ Act of 2005, the stated objectives of the policy include promoting new

economic activity, expanding exports, attracting both domestic and foreign investment, generating

employment, and improving infrastructure (SEZ Act 2005). These goals were to be achieved

through a standardized legal framework governing the establishment and operation of SEZs. Firms

operating within SEZs are granted both administrative and fiscal benefits. On the administrative

side, the Act provides for a "single-window clearance" system, designed to expedite approvals by

consolidating them under one authority. Fiscal incentives include full income tax exemption on

export income for the first five years, a 50% exemption for the next five, and an additional five-year
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50% exemption on reinvested profits. SEZ units were also exempt from sales and service taxes, and

from the Minimum Alternate Tax (MAT) until 2012. In addition, duty-free imports and domestic

procurement of inputs are allowed under the Act.

To establish a Special Economic Zone (SEZ), developers must first obtain government approval,

followed by official notification and authorization to begin operations. To obtain approval, SEZ

developers must demonstrate rightful ownership of sufficiently large parcels of land, which varies

depending on the industry. For example, a minimum contiguous area of 10 square kilometers is

required for multi-product zones, whereas only 0.1 square kilometers suffices for sector-specific

zones such as IT zones. When a developer is still in the process of acquiring land, only in-principal

approval can be granted. Formal approval is granted when the following conditions are met: the

state government’s endorsement of the project, the developer’s proof of land ownership, and the

state government’s provision of tax exemptions, assurance of adequate infrastructure, and clearance

from state regulatory bodies. Once approved, a notification authorizing the commencement of

operations is issued by the board. Only at this point, investment and construction are permissible

(Alkon 2018; Görg and Mulyukova 2024).

While the SEZ Act is a national-level policy, state governments play a critical role in its local

interpretation and implementation. Firstly, the acquisition of land required for the SEZ could be

challenging (Seshadri 2011). Secondly, the state government is often responsible for providing

essential infrastructure, such as electricity (Kale 2014), which has been shown to significantly

impact firm productivity in India (Allcott, Collard-Wexler, and O’Connell 2016). Beyond the

administrative and fiscal incentives outlined earlier, states may also introduce supplementary

regulations, suggesting the possibility of heterogeneous policy impacts across regions.
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India’s Rising Carbon Emissions Over the past two decades, India has experienced one of the

fastest rates of economic growth among major economies, driven largely by industrial expansion,

infrastructure investment, and urbanization (Subramanian 2019; Ghosh and Parab 2021). However,

this development has come with significant environmental costs (Ghosh 2002, 2010). India is now

the world’s third-largest carbon emitter, with energy-related emissions more than doubling since

the early 2000s (Investopedia 2024). Much of this increase stems from a heavy reliance on coal for

electricity generation and the expansion of energy-intensive manufacturing sectors such as steel,

cement, and chemicals (Shearer, Fofrich, and Davis 2017).

This rise in emissions has drawn increasing domestic and international attention, particularly as

India seeks to balance its development goals with commitments to global climate agreements such

as the Paris Accord. The government has launched several policy initiatives to promote renewable

energy and to improve energy efficiency due to existing barriers to clean energy adoption (Luthra

et al. 2015; Mahadevan, Meeks, and Yamano 2023). However, the carbon intensity of industrial

production remains a critical concern. Given the growing environmental concerns, it is essential

to examine how industrial and regional development policies—such as Special Economic Zones

(SEZs)—interact with environmental outcomes as it presents a key opportunity for reform.

3 Data

We rely on two data sources to investigate the causal impact of SEZ policies on firms’ carbon

emissions. The first is a panel dataset on Indian firms and the second is the data on SEZs in India.

Data on Firms Prowess Database compiled by the Centre for Monitoring the Indian Economy

(CMIE) includes data on all publicly traded firms and a substantial number of private firms.
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It is a firm-level panel dataset that contains detailed information from income statements and

balance sheets of companies covering more than 70% of the economic activity in India’s organized

industrial sector and representing 75% of all corporate taxes collected by the government (Goldberg

et al. 2010). The database predominantly features large and medium-sized Indian firms. For our

study, we extract information on firm attributes such as location, age, size, entity type, and industry,

as well as financial data including annual total income, assets, expenses, and sales.

Since our primary variable of interest is firms’ carbon emissions, we begin by extracting data

on firms’ annual energy consumption from the Prowess database. This dataset provides detailed

information on energy use by source, with each energy type reported in its corresponding unit.

For instance, a firm that consumes both electricity and coal in a given year would have two separate

records—one indicating the number of kilowatt-hours (kWh) of electricity and another showing

the metric tonnes of coal consumed. To estimate each firm’s carbon emissions, we follow a method

similar to Barrows and Ollivier (2018), assigning a source-specific carbon emission factor to each

type of energy consumed. The emission factors used in our calculations are presented in Table B.

1. By multiplying the quantity of energy used by the corresponding emission factor, we calculate

the total annual carbon emissions for each firm.3

Data on SEZs Our second data source is the India Ministry of Commerce and Industry, specifi-

cally the Department of Commerce’s website on Special Economic Zones (SEZs), where informa-

tion on SEZs is published periodically (Ministry of Commerce and Industry, Government of India

2025).4 From this website, we obtained detailed data on SEZs established under the SEZ Act of

2005, including their notification dates, developer names, locations (state and address), areas, and

3More details regarding the data construction process can be found in the Data Appendix C.
4Source: https://sezindia.gov.in/notified-list-sez.
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types. Figure A.1 illustrates the evolution of the number and total area of notified SEZs since the

enactment of the SEZ Act in 2005. The notification of SEZs began in April 2006, with their number

rapidly increasing to 260 by the end of 2010 and gradually reaching 308 by late 2016. A brief surge

in the first quarter of 2017 further raised the total to 354 by the end of 2020. The expansion in SEZ

areas followed a similar pattern, with relatively larger SEZs being established between 2006 and

2010, leading to a faster increase in total area compared to the number of notifications. By 2020,

the total area of SEZs reached 38,200 hectares—approximately 64% of the size of Mumbai.

Mapping firms to SEZs We geocode each notified SEZ based on its reported address and area.

Figure A.2 illustrates the geographic distribution of the notified SEZs across India, with districts

shaded darker indicating a higher concentration of notified SEZs. The figure shows that SEZs are

primarily concentrated in populous and developed regions, such as Mumbai, Pune, Hyderabad,

and Chennai. We geocode the firm-level data based on the firms’ location information and then

map it to the geocoded SEZs. Section 4 provides a detailed explanation of the mapping process.

Our analysis is confined to a 10 km by 10 km grid around the SEZ centroids.

Descriptive Statistics Appendix Table B.2 provides the summary statistics for our study sample,

which consists of 8,256 firms observed from 2000 to 2019. These firms vary in terms of entity

types, industries, ages, and sizes. Specifically, approximately 35% of the firms were established

after 1991, 17% between 1986 and 1990, and 27% between 1972 and 1985. The vast majority (over

80%) of these firms operate in the manufacturing sector and are publicly listed. On average, each

firm emits around 21,857 metric tons of carbon annually.
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4 Empirical Strategy

To identify the causal effect of the SEZ policy on firms’ carbon emissions, we implement a spatial

regression discontinuity and difference in difference estimation (RD-DiD) design. This approach

compares the carbon emissions of similar firms located within and outside SEZs, both before and

after SEZ notification. Similar to the strategy adopted by Görg and Mulyukova (2024), we define

the treatment zone as a grid centered on the provided address, with dimensions matching the land

area specified in the SEZ notification, as shown by the yellow squares in Figure A.3. To minimize

bias from misclassified treatment and control firms, we specify a “leave-out” zone—a 2 km × 2

km square centered on the SEZ’s centroid (represented by the gray area in Figure A.3). Firms

located outside the treatment grid but within the leave-out grid are excluded from the analysis.

We further restrict our analysis to firms within a 10 km × 10 km grid (outlined by the purple box in

Figure A.3), ensuring that our sample is geographically comparable and minimizing the influence

of distant firms with potentially different characteristics.

Our empirical strategy relies on the assumption that, in the absence of the SEZ policy, firms

within SEZs would have evolved similarly to those outside SEZs. However, as is common in

place-based policy evaluations, treatment assignment is not random. Policymakers may strategi-

cally select SEZ locations, and firms may self-select into these zones based on expected benefits.

Consequently, firms within SEZs differ statistically from those outside SEZs in terms of observable

characteristics, as shown in Appendix Table B.3. To address this selection bias, we complement

our RD-DiD design with a matching process to construct a comparable control group of firms

outside SEZs. Specifically, we use the K-means clustering algorithm to match firms based on

key attributes, including size, age, ownership, and entity type. This approach ensures that the
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control group closely mirrors the characteristics of SEZ firms. Appendix Table B.4 confirms the

effectiveness of this matching process, showing that differences in age, size, entity type, and in-

dustry type are statistically insignificant in the matched sample. Additionally, to account for the

staggered timing of SEZ implementation, the control group includes only firms that were never

treated (Callaway and Sant’Anna 2021).

Our estimation model incorporates a comprehensive set of fixed effects to account for time-,

state-, district-, and industry-specific confounding factors, as specified in the following equation:

𝑌𝑖𝑡 = 𝛽𝑆𝐸𝑍𝑖𝑡 + 𝑓 (𝑝𝑎𝑖𝑟, 𝑡 , 𝑠 , 𝑑, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦)+ 𝜀𝑖𝑡 (1)

where 𝑖, 𝑡, 𝑠, and 𝑑 denote firm, year, state, and district, respectively. The outcome variable𝑌𝑖𝑡 is the

log of annual carbon emissions for firm 𝑖 in year 𝑡. 𝑆𝐸𝑍𝑖𝑡 is a binary indicator equal to one if firm 𝑖

is located within an SEZ in year 𝑡 following the SEZ notification year, and zero otherwise.. Function

𝑓 (·) represents the set of fixed effects for treatment-control pair, year, state, district, and industry

(classified by 8-digit CMIE industry codes). To control for time-varying confounding factors, such

as state- or district-level policies that could affect firms’ carbon emissions, our preferred model

also includes state-by-year and district-by-year fixed effects. Although the Prowess data and SEZ

data extend to 2021, we restrict our sample period to 2000–2018 to avoid attributing the effects

of COVID-19 to SEZs. The parameter of interest, 𝛽, captures the differential change in carbon

emissions after SEZ notification between firms located within SEZs and those outside, adjusting

for firm-level characteristics and spatial-temporal differences. Standard errors are clustered at

the district-year level to account for potential spatial and temporal correlation in the error term

(Wooldridge 2003; Bertrand, Duflo, and Mullainathan 2004). We also perform robustness checks
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using alternative clustering levels, including the treatment-control pair level.

To further investigate the dynamic effects of SEZs, we estimate an event-study version of

Equation (1), specified as follows:

𝑌𝑖𝑡 = 𝛼𝑘

2∑
𝑘=6

𝐵𝑒 𝑓 𝑜𝑟𝑒𝑖 ,𝑡−𝑘 ×𝑆𝐸𝑍𝑖𝑡 + 𝛿𝑔

10∑
𝑔=0

𝐴 𝑓 𝑡𝑒𝑟𝑖 ,𝑡+𝑔 ×𝑆𝐸𝑍𝑖𝑡 (2)

+ 𝑓 (𝑝𝑎𝑖𝑟, 𝑡 , 𝑠 , 𝑑, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦)+ 𝜀𝑖𝑡

In this specification, we introduce the terms Before𝑖 ,𝑡−𝑘 and After𝑖 ,𝑡+𝑔 , which are event-time indi-

cators, representing 𝑘 years before and 𝑔 years after SEZ notification, respectively. Year 𝑡 − 1 is

omitted. The coefficient 𝛼𝑘 captures the pre-treatment trends, allowing us to test the parallel trends

assumption. The coefficient 𝛿𝑔 measures the dynamic effects of SEZs on firms’ carbon emissions

over time. This event-study approach allows us to visualize the temporal pattern of SEZ effects on

carbon emissions, providing a direct test of the parallel trends assumption crucial to the validity

of our empirical strategy.

5 Main Results

The Effect of SEZs on Firms’ Carbon Emissions Table 1 presents the main estimation results

for Equation (1). Column (1) reports the results of the baseline model, which includes fixed

effects for treatment-control pairs, industry (8-digit CMIE industry codes), year, and state. The

findings show that firms located within SEZs experience a statistically significant 18% reduction

in carbon emissions compared to similar firms outside SEZs.5 In column (2), we extend the model

by adding state-by-year fixed effects to account for time-varying state-level confounders, such as

5The effect size is calculated by: (𝑒−0.2032 −1) ∗100.
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state-specific policies or economic shocks. The results indicate an even larger reduction in carbon

emissions of approximately 24%, which remains statistically significant. Column (3), our preferred

specification, further refines this specification by including district fixed effects, yielding a 25%

reduction in carbon emissions which is also statistically significant. Finally, column (4) provides a

more granular analysis by incorporating district-by-year fixed effects, capturing both spatial and

temporal variations at the district level. The estimated effect remains statistically significant, with

a magnitude similar to that in column (3), confirming the robustness of our findings.

Event Study Results To assess the evolution of SEZ effects and validate the parallel trends

assumption, we conduct an event-study analysis using the empirical model specified in Equation

(2). Figure 1 reveals no evidence of pre-trend differences in carbon emissions between firms

inside and outside SEZs prior to SEZ notification, supporting the validity of our empirical strategy.

Notably, the SEZ-driven reduction in carbon emissions begins to materialize three years after

SEZ notification. This observed delay in the impact of SEZs on firms’ energy use suggests that,

for firms in developing countries, energy consumption decisions are not an immediate or first-

order response to the economic incentives provided by place-based policies. Instead, firms may

require time to adopt cleaner technologies, reconfigure production processes, or renegotiate energy

contracts, leading to a gradual reduction in carbon emissions.

Robustness Checks We assess the robustness of our results across different samples, model

specifications, and clustering levels. Appendix Table B.5 presents the results of various robustness

checks, all based on the preferred model specification from column (3) of Table 1, which includes

state-year and district fixed effects.

First, we test the sensitivity of our findings to different clustering levels. Columns (1) to (3) of
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Appendix Table B.5 show results with standard errors clustered at the treatment-control pair, state

and year, and firm levels, respectively. In all cases, the standard errors are consistent with those

reported in Table 1, indicating that our findings are robust to alternative clustering approaches.

Second, we examine whether our results are driven by firms established during the early years

of SEZ implementation (2000–2005). Given that the SEZ policy was first issued in 2000 and fully

enacted in 2005, we re-estimate the model using two sub-samples: firms incorporated before

2000 and those incorporated before 2005. Columns (4) and (5) confirm that the estimates remain

statistically significant and consistent with the main findings. Although the magnitude of the

estimates is slightly larger than in the full sample, these differences are not statistically significant.

Third, we test the robustness of our results to different spatial definitions of the treatment and

leave-out zones. Specifically, we re-estimate the model using a 5 km treatment zone and a 1 km

leave-out zone. Columns (6) to (8) show that the estimated effects range from -0.3 to -0.4, which

are statistically indistinguishable from our main results. This consistency demonstrates that our

findings are not sensitive to the spatial extrapolation of the SEZ treatment area.

Finally, as an alternative to the RD-matching design, we employ the inverse probability weight-

ing (IPW) method. Appendix Figure A.4 illustrates the results using IPW. While the precision of

the estimates varies slightly, the direction of the estimated effects and the lagged effect pattern

remain consistent with our main findings. This further supports the robustness of our analysis.

Impacts on Income, Sales, and Expenses To better understand the source of carbon emission

reductions, we first examine whether SEZs lead to a contraction in firm production, which could

mechanically reduce energy use and emissions.

In particular, we examine whether SEZs significantly affect firms’ production, measured by
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annual total income, total sales, total expenses, and total assets. We collect firms’ annual financial

data from the Prowess database and construct a firm-year panel sample. Since the earliest available

financial data for these outcomes begin in 2014, our sample period is restricted to 2014–2019. We

acknowledge that this time frame may not capture the full impact of SEZs during their rapid

expansion between 2006 and 2010. Moreover, we face a missing data issue—firms with energy

consumption data do not always have corresponding financial data, resulting in a smaller sample.

To address this, we consider two samples: one consisting of all firms with non-missing financial

data from the Prowess database, which we refer to as the Prowess firms sample, and another

consisting of firms in our empirical analysis sample that also have non-missing financial data,

which we refer to as the empirical analysis sample. We then apply the same spatial RD and matching

framework used in the main analysis, re-estimating the model specification from Column (3) of

Table 1 using financial outcomes as dependent variables. The model includes state-year and district

fixed effects for both samples separately. Table 2 presents the estimation results, where Panel A

uses the Prowess firms sample, and Panel B uses the empirical analysis sample.

The results in Panel A show that SEZs are associated with statistically significant increases

in income, sales, and expenses for firms in the Prowess firms sample. Specifically, firms within

SEZs experience increases in assets (by INR 285), expenses (by INR 48), income (by INR 60), and

sales (by INR 60) compared to firms outside SEZs. However, these estimates are not statistically

significant in the empirical analysis sample (Panel B), likely due to its smaller sample size. Given the

data limitations discussed earlier, these findings should be interpreted with caution. While they

provide suggestive evidence that SEZs may increase firms’ production, we refrain from making

strong causal claims. However, our results are broadly consistent with prior studies on India

that find positive economic impacts of SEZs on economic outcomes (Chaurey 2017; Shenoy 2018;
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Hasan, Jiang, and Rafols 2021; Gallé et al. 2024).

Changes in Energy Consumption Mixes Beyond production, SEZs may affect firm-level emis-

sions through changes in the energy mix—shifting consumption from high-emission sources to

cleaner alternatives. To directly investigate this channel, we differentiate emissions by source,

categorizing them as either conventional or renewable (cleaner) energy. For this classification, we

adopt the IPCC 2011 definition (Edenhofer et al. 2011). Renewable energy includes the direct use

of biomass and waste, as well as electricity generated from biomass, waste, hydro, solar, and wind.

Conventional energy encompasses the direct use of, and electricity generated from, coal, gas, and

oil. We then create three additional outcome variables: (a) carbon emissions from renewable

energy, (b) carbon emissions from conventional energy (in logarithmic form), and (c) the share

of emissions from renewable energy, calculated as the ratio of carbon emissions from renewable

energy sources to total carbon emissions. We re-estimate regression Equation (1) using these three

outcomes, including state-by-year and district fixed effects. Given the large number of zeros in

both renewable energy emissions and the share of renewable energy—likely reflecting the rela-

tively low adoption of renewable sources in our sample—we employ Poisson regression estimated

using ppmlhdfe in Stata for these two outcomes, rather than applying a log transformation.

Table 3 summarizes the estimation results. We find a substantial increase in carbon emissions

from renewable energy and a statistically significant decrease in emissions from conventional

energy for firms within SEZs. Specifically, SEZs are associated with a 480% increase in emissions

from renewable energy and a 27% reduction in emissions from conventional energy. Given that the

sample average of carbon emissions from conventional energy is 21,900 metric tons—approximately

980 times greater than the 22.32 metric tons from renewable energy (see Appendix Table B.2)—the
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relatively larger percentage increase in renewable energy emissions is expected. Consistent with

these findings, the share of emissions from renewable energy increases by 67%. These results

suggest that the overall reduction in carbon emissions among SEZ firms is primarily driven by a

shift toward renewable energy sources, which have significantly lower carbon intensity.

In sum, our empirical results consistently show that SEZs are associated with significant re-

ductions in firm-level carbon emissions. Importantly, we find no evidence that these reductions

are driven by a contraction in firm production. Instead, the decline in emissions appears to be

primarily driven by a shift in the energy mix: firms within SEZs significantly increase their use of

renewable energy sources while reducing their reliance on conventional, higher-emission energy

sources.

6 Conceptual Framework

In this section, we develop a conceptual framework to reconcile the findings from Section 5 and

to derive testable predictions that shed light on the potential underlying mechanisms. Our model

aims to illustrate: (a) how tax exemptions associated with Special Economic Zones (SEZs) influence

firms’ energy consumption decisions, (b) the conditions under which firms are likely to adopt

cleaner energy sources, and (c) the differential responses across various types of firms, industrial

sectors (Koetse, De Groot, and Florax 2008; Stern 2012; Shapiro and Walker 2018), and regions.

The key features of our conceptual framework allow firms to decide on energy consumption in

the presence of benefits associated with SEZs. We also incorporate heterogeneity in cost structure

and access to various electricity markets. Specifically, first, it incorporates energy consumption

decisions into firms’ profit maximization and cost minimization functions. Second, we differentiate
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between dirtier (conventional) energy sources with higher carbon emissions and cleaner (renewable)

energy sources with lower emissions, accounting for the differential costs of adoption. Third, we

distinguish between manufacturing and non-manufacturing firms by recognizing differences in

their energy consumption mixes and the substitution patterns across different energy types (Koetse,

De Groot, and Florax 2008; Stern 2012).

Setup We consider two sectors, indexed by 𝑠 ∈ {𝑀,𝑁}, where 𝑀 denotes the manufacturing

sector and 𝑁 the non-manufacturing sector. Inspired by Atkeson and Kehoe (1999) and Hassler,

Krusell, and Olovsson (2012), we assume that a representative firm in sector 𝑠 produces output

using the following Cobb-Douglas production function:

𝑌𝑠 = 𝐴𝑠𝐾𝑠
𝜓𝐾𝐸𝑠

𝜓𝐸𝐿𝑠
𝜓𝐿 (3)

Let 𝑌𝑠 denote the total output of a representative firm in sector 𝑠, and let 𝐴𝑠 capture total factor

productivity (TFP) in that sector. Production requires capital (𝐾𝑠), energy (𝐸𝑠), and labor (𝐿𝑠), with

output shares denoted by 𝜓𝐾 , 𝜓𝐸, and 𝜓𝐿, respectively. These shares satisfy 0 < 𝜓𝐾 +𝜓𝐸 +𝜓𝐿 <

1, indicating decreasing returns to scale in the short to medium run (Fikkert and Hasan 1998;

Balakrishnan, Pushpangadan, and Babu 2002). Firms are subject to a constant corporate tax rate,

denoted by 𝑡.

We assume perfectly competitive product and input markets. Let 𝑃 = {𝑝, 𝑝𝐾 , 𝑝𝐸 , 𝑝𝐿} denote the

price vector, where 𝑝 is the output price, and 𝑝𝐾 , 𝑝𝐸, and 𝑝𝐿 are the prices of capital, energy, and

labor, respectively.
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Energy Consumption Firms in sector 𝑠 choose between two types of energy inputs: clean energy,

denoted by 𝐸𝑐𝑠 , which generates lower carbon emissions, and conventional (dirty) energy, denoted

by 𝐸𝑑𝑠 , which produces higher emissions. Total energy use is modeled as a constant returns to scale

(CES) aggregate of the two energy types. Formally, the total energy input of a representative firm

in sector 𝑠 is given by:

𝐸𝑠 =
[
𝛿𝑐(𝐸𝑐𝑠 )𝜌𝑠 + 𝛿𝑑(𝐸𝑑𝑠 )𝜌𝑠

] 1
𝜌𝑠 (4)

where 𝛿𝑐 and 𝛿𝑑 are CES share parameters that reflect the relative importance or preference of

clean and conventional energy in the energy aggregate, with 𝛿𝑐+𝛿𝑑 = 1. The parameter 𝜌𝑠 governs

the elasticity of substitution between clean and dirty energy in sector 𝑠.

The elasticity of substitution between clean and conventional energy, denoted by 𝜎𝑠 , is given

by 𝜎𝑠 = 1
1−𝜌𝑠 . We assume the substitutibility is different for manufacturing sector and non-

manufacturing sector. For non-manufacturing firms that primarily use electricity as their main

energy source, we assume that they do not distinguish between electricity generated from cleaner

energy sources and conventional energy sources. This is consistent with Stern (2012)’s finding

that service (non-manufacturing) sectors have high elasticities of substitution (near 1) for electric-

ity, as the energy source of the electricity is less critical. We show in the Appendix Figure A.5

that electricity is the primary source of carbon emissions for non-manufacturing firms (including

both the financial and non-financial sectors), while fossil fuels such as oil, natural gas, and coal

constitute the major sources of carbon emissions for manufacturing firms. In other words, for

non-manufacturing firms, 𝐸𝑐 and 𝐸𝑑 are approximately perfect substitutes, i.e., 𝜌 → 1, this leads

to the following,

𝐸𝑁 = 𝛿𝑐𝐸
𝑐
𝑁 + 𝛿𝑑𝐸

𝑑
𝑁 (5)
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For manufacturing firms, a variety of energy is used in production and different energy types are

unlikely to be perfect substitute (Koetse, De Groot, and Florax 2008).

Lastly, we assume the energy price is set by a competitive market. We denote the unit price

of conventional energy by 𝑝𝐸𝑑 and the unit price of cleaner energy by 𝑝𝐸𝑐 . In addition, we follow

Allcott and Greenstone (2012) and Covert, Greenstone, and Knittel (2016), and assume that there

is a fixed cost 𝑓 associated with adopting clean energy.6 However, the unit price of cleaner energy

is lower than conventional energy, 𝑝𝐸𝑐 < 𝑝𝐸𝑑 .

The total carbon emissions resulting from energy consumption 𝐸𝑠 depend not only on the

quantity of energy used but also on the composition of clean (𝐸𝑐𝑠 ) and conventional (𝐸𝑑𝑠 ) energy

sources, as well as their respective emissions intensities. Let 𝜃𝑐 and 𝜃𝑑 denote the emissions

intensity per unit of clean and conventional energy, respectively, where 𝜃𝑐 < 𝜃𝑑. Then, the total

emissions 𝐶𝐸𝑠 for a firm in sector 𝑠 can be expressed as:

𝐶𝐸𝑠 = 𝜃𝑐 ·𝐸𝑐𝑠 +𝜃𝑑 ·𝐸𝑑𝑠 (6)

Firm Optimization We now solve the firm’s optimization problem and examine how SEZs affect

their production decisions. We assume that firms operate in a nested decision-making structure:

they first choose the optimal input levels of capital (𝐾∗), labor (𝐿∗), and energy (𝐸∗); then they

determine the optimal energy mix across different energy sources. SEZs offer a tax deduction of

𝑐%, applied proportionally to the corporate tax rate 𝑡. As a result, the firm’s after-tax revenue is

given by (1− 𝑡(1− 𝑐))𝑝𝑌𝑠 .

6For example, 𝑓 may reflect costs or new investments associated with purchasing solar panels. Allcott and Greenstone
(2012) find that high upfront costs (e.g., for solar panels) deter firms from adopting energy-efficient technologies, despite
lower operational costs, particularly for smaller firms. Covert, Greenstone, and Knittel (2016) note that renewable energy
sources typically entail high initial capital costs but lower marginal costs compared to fossil fuels.
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First, firms choose the optimal production level Y to maximize profits:

max
𝑌𝑠

Π= (1− 𝑡(1− 𝑐))𝑝𝑌𝑠 −𝐶(𝑌𝑠 , 𝑃)

and the optimal input levels to minimize costs:

min
𝐾,𝐸,𝐿

𝐶(𝑌𝑠 , 𝑃) = 𝑝𝐾 ·𝐾𝑠 + 𝑝𝐸 ·𝐸𝑠 + 𝑝𝐿 · 𝐿𝑠 , 𝑠.𝑡. 𝑌𝑠 ≥ 𝑌̄𝑠

Solving the first-order conditions of the cost minimization problem, we obtain the conditional

factor demands, and an optimized cost function as follows:

𝐶∗(𝑌𝑠 , 𝑃) =
( 𝑌𝑠
𝐴𝑠

) 1
𝜓
( 𝑝𝐾𝜓𝐸
𝑝𝐸𝜓𝐾

) 𝜓𝐾

𝜓
( 𝑝𝐿𝜓𝐸
𝑝𝐸𝜓𝐿

) 𝜓𝐿

𝜓 𝑝𝐸

𝜓𝐸

where 𝜓 =𝜓𝐾+𝜓𝐸+𝜓𝐿. Plugging this into the profit function and solving the first-order condition

gives the optimal output level:

𝑌∗
𝑠 = 𝐴𝑠𝜓

𝜓
1−𝜓

[
1− 𝑡(1− 𝑐))𝑝

] 𝜓
1−𝜓 ·

( 𝑝𝐸𝜓𝐾

𝑝𝐾𝜓𝐸

) 𝜓𝐾

1−𝜓 ·
( 𝑝𝐸𝜓𝐿

𝑝𝐿𝜓𝐸

) 𝜓𝐿

1−𝜓 · 𝜓
𝐸

𝑝𝐸

𝜓
1−𝜓

The corresponding total energy demand is:

𝐸∗
𝑠 = 𝜓

1
1−𝜓

[
1− 𝑡(1− 𝑐))𝑝

] 1
1−𝜓 ·

( 𝑝𝐸𝜓𝐾

𝑝𝐾𝜓𝐸

) 𝜓𝐾

1−𝜓 ·
( 𝑝𝐸𝜓𝐿

𝑝𝐿𝜓𝐸

) 𝜓𝐿

1−𝜓 ·
𝜓𝐸

𝑝𝐸

1
1−𝜓

It is straightforward to show that 𝜕𝐸∗
𝑠/𝜕𝑐 > 0. That is, a higher tax deduction 𝑐 increases output

and thus total energy consumption, which is consistent to our empirical findings in Section 5.

After determining the optimal level of total energy consumption, firms in sector 𝑠 decide how
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to allocate this energy between cleaner and conventional sources. Specifically, they choose the

quantities of energy inputs 𝐸𝑥𝑠 , where 𝑥 ∈ {𝑐, 𝑑} denotes clean and dirty energy, respectively, in

order to minimize total energy costs:

min
𝐸𝑐𝑠 ,𝐸

𝑑
𝑠

𝑝𝐸
𝑑

𝑠 𝐸𝑑𝑠 + 𝑝𝐸
𝑐

𝑠 𝐸
𝑐
𝑠 + 𝑓 1(𝐸𝑐𝑠 > 0)

s.t.


𝐸∗
𝑠 = 𝛿𝑐𝐸𝑐𝑠 + 𝛿𝑑𝐸𝑑𝑠 , 𝑠 = 𝑁

𝐸∗
𝑠 =

[
𝛿𝑐(𝐸𝑐𝑠 )𝜌+ 𝛿𝑑(𝐸𝑑𝑠 )𝜌

] 1
𝜌 , 𝑠 =𝑀

(7)

First, consider non-manufacturing firms, where clean and dirty energy sources are perfectly

substitutable. In this case, corner solutions arise: a firm will adopt only cleaner energy when the

following condition holds:

𝐸∗
𝑁 > 𝑓 ·

(
𝛿𝑐𝛿𝑑

𝑝𝐸
𝑑𝛿𝑐 − 𝑝𝐸𝑐𝛿𝑑

)
. (8)

This inequality is more likely to be satisfied under the following conditions: (i) the optimal

energy demand 𝐸∗
𝑁

is large, (ii) the fixed cost 𝑓 of adopting clean energy is low, and (iii) the price

gap between conventional and cleaner energy—as captured by a higher 𝑝𝐸
𝑑

𝑝𝐸
𝑐 ratio—is wide.

How do SEZs influence the adoption of cleaner energy? Recall that 𝜕𝐸∗
𝑁

𝜕𝑐 > 0, indicating that

SEZs increase total energy consumption 𝐸∗
𝑁

. As a result, SEZs raise the likelihood that condition (8)

is satisfied, thereby encouraging firms to adopt cleaner energy sources, which is consistent to our

empirical findings in Section 5. Thus, the carbon emissions effect of SEZs is twofold: while they

lead to higher total energy usage, they also increase the probability of cleaner energy adoption.

According to the carbon emissions Equation (6), total emissions 𝐶𝐸𝑁 can decline, provided that

the emissions intensity of cleaner energy (𝜃𝑐) is sufficiently lower than that of conventional energy

24



(𝜃𝑑).

Moreover, this condition (8) is more easily satisfied for larger or more emission-intensive firms,

which naturally have higher energy requirements (𝐸∗
𝑁

). Additionally, when both the unit cost of

clean energy (𝑝𝐸𝑐 ) and the fixed adoption cost ( 𝑓 ) are low, firms are more likely to adopt the

all-clean energy corner solution.

We show below that this is not the case for manufacturing firms. Solving the first-order

condition of the optimization problem in Equation (7), we obtain:

𝐸𝑐∗
𝑀

𝐸𝑑∗
𝑀

=

( (1− 𝛿𝑐)𝑝𝐸
𝑐

𝛿𝑑𝑝𝐸
𝑑

) 1
𝜌𝑀−1

and
𝐸𝑐∗
𝑀

𝐸∗
𝑀

=
𝛾

(𝛿𝑐𝛾𝜌𝑀 + 𝛿𝑑)1/𝜌𝑀

where 𝛾 =

(
(1−𝛿𝑐)𝑝𝐸

𝑐

𝛿𝑑𝑝𝐸
𝑑

) 1
𝜌𝑀−1 . The share of cleaner energy depends on the relative prices 𝑝𝐸𝑑 and 𝑝𝐸𝑐 .

Importantly, 𝜕
(
𝐸𝑐∗
𝑀

𝐸∗
𝑀

)
/𝜕𝑐 = 0, indicating that this share is unaffected by changes in 𝑐. Therefore,

unlike non-manufacturing firms, manufacturing firms adjust their cleaner energy consumption

only when dirty energy becomes relatively more expensive than clean energy. In this setting, tax

deductions have no direct impact on the share of cleaner energy used.

In summary, our conceptual model provides theoretical guidance that aligns with the empirical

patterns documented in Section 5. Furthermore, it yields additional testable predictions under the

specified setting:

Prediction 1. Compared to manufacturing firms, non-manufacturing firms are more likely to adopt cleaner

energy in response to tax incentives, due to their greater substitutability between cleaner and conventional

energy sources. As a result, they are more likely to experience reductions in total carbon emissions, provided

that the fixed costs of adoption are sufficiently low and cleaner energy is relatively less expensive than

conventional alternatives.

25



Prediction 2. Larger firms are more likely to adopt cleaner energy in response to tax incentives, as they are

better positioned to overcome the fixed costs and entry barriers associated with adoption.

Prediction 3. The impact of SEZs is likely to be greater in contexts where the cost of adopting cleaner energy

is lower—either due to reduced unit prices or lower fixed adoption costs—for instance, in regions with better

access to clean energy infrastructure.

7 Exploration of Mechanisms

We further explore the mechanisms driving our results by testing the predictions outlined in

Section 6 through an analysis of heterogeneous treatment effects across industries, firm sizes,

and regions. These exercises provide insights into how access to clean energy, firms’ long-term

decision-making capabilities, and industry characteristics influence the observed reductions in

carbon emissions.

Heterogeneity by Industry We begin by examining how the impact of SEZs on firm-level carbon

emissions varies across industries. Using 6-digit CMIE industry codes, we classify firms into

five industry groups: Manufacturing, Non-Financial Services, Mining and Construction, Financial

Services, and Diversified. We then estimate our preferred model separately for each of these

groups. Figure 2 presents the estimation results.7 Our findings reveal substantial and statistically

significant reductions in carbon emissions for firms in the Services sectors, i.e., Non-Financial and

Financial Services. Specifically, SEZs are associated with a 40% reduction in carbon emissions for

firms in the Non-Financial Services sector and a 60% reduction in the Financial Services sector.

In contrast, the estimated effects for the Manufacturing and Mining and Construction sectors are

7Due to the small sample size, there is no estimate for the Diversified group.
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small and statistically insignificant. These results are consistent with our theoretical predictions

(Prediction 1) in Section 6, which suggest that firms with greater flexibility in energy use, such as

those in the Services sector, are more responsive to SEZ incentives.

Heterogeneity by Firm Size Firms of different sizes may respond differently to SEZs, leading to

varied production and energy use decisions, which ultimately affect their carbon emissions. To

explore this heterogeneity, we categorize firms into two groups based on size: Group 1 includes

larger firms, while Group 2 consists of smaller firms.8 Estimating our preferred model separately

for these two groups, we find that larger firms (Group 1) generally experience a more substantial

reduction in carbon emissions in response to SEZs. As shown in Figure 3, firms in the top 50% of

the size distribution within SEZs reduce their carbon emissions by approximately 31%—an effect

more than seven times greater than the 5% reduction observed among smaller firms in the bottom

50%. This finding is consistent with our theoretical prediction 2, which suggests that larger firms

are better positioned to adopt cleaner energy due to lower effective entry barriers for adoption.

Beyond firm size, we also explore heterogeneity by emitter type. Specifically, we rank firms

based on their average pre-treatment share of carbon emissions and re-estimate our preferred

specification across emitter groups. As shown in Appendix Figure A.6, the results indicate that

carbon reductions are primarily driven by high-emitting firms. This is consistent with Prediction 2,

as these firms are more likely to overcome the fixed costs associated with adopting cleaner energy

and have greater potential for emission reductions.9

8Prowess defines firm size as the three-year average of total income and total assets. The size decile variable indicates a
firm’s relative position in the overall distribution of companies by size. Group 1 comprises firms in Deciles 1 through 5,
and Group 2 includes firms in Deciles 6 through 10. See Prowess’s data dictionary for more details on the construction
of the firm size variable.

9We also explore how industry and emitter type interact in shaping the heterogeneous effects by reproducing Appendix
Figures A.6 separately by industry. The results are summarized in Appendix Figure A.7. Our findings show that
non-services sectors, such as Manufacturing and Mining and Construction, exhibit no significant impact, while the
observed effects are primarily driven by major emitters within the Non-Financial Services sector. In contrast, in the
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Heterogeneity by Access to Clean Energy There are significant regional variations in access to

clean energy across India. The northern, southern, and western regions have experienced rapid

growth in renewable energy markets, with cleaner energy sources accounting for a larger share of

their total energy mix. In contrast, the northeastern, eastern, and central regions rely more heavily

on conventional, high-emission energy sources, with a much smaller presence of renewable energy.

We classify the country into two clusters: Cluster 1 includes the Northern, Southern, and Western

Zones and Cluster 2 consists of North Eastern, Eastern, and Central Zones. It is also worth noting

that the regions in Cluster 1 are generally more economically developed than those in Cluster 2.10

Appendix Figure A.8 plots trends in installed electricity capacity (in MW) by energy source and

region from 2015 to 2024. The figure reveals a clear increase in clean energy capacity in Cluster 1,

while installed capacity in Cluster 2 remains largely unchanged across both clean and conventional

sources.11

Table 4 presents the main estimation results separately for each cluster. Our findings reveal

that SEZs significantly reduce firms’ carbon emissions by approximately 10% in Cluster 1, where

renewable energy accounts for a larger share of the energy mix. In contrast, the impact of SEZs

on carbon emissions in Cluster 2 is negligible, consistent with the lower availability of renewable

energy in this region. To further explore regional differences, Table 5 shows the results separately

for each zonal region. The results show considerable heterogeneity, with a relatively larger effect

for the Northern Zonal region (50%) and sizable effects for the Southern (12%) and Western (8%)

Zonal region. Overall, our findings suggest that the impact of SEZs on firms’ carbon emissions

Financial Services sector, larger reductions are observed among small emitters—specifically, firms whose pre-treatment
carbon emissions are below the median. Given that Non-Financial Services firms account for a larger share of our
sample—approximately four times the number of Financial Services firms—the greater overall effect for the top 25% of
emitters in Figure A.6 is primarily driven by this sector.
10Appendix Figure A.9 provides a map of the six zonal divisions, which we collapse into two clusters.
11Installed electricity capacity data are available from 2015 onward and are sourced from ICED (https://iced.niti.gov.

in/energy).
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is strongly influenced by regional factors, including the composition of the energy mix, access

to cleaner energy sources, and the level of economic development. Consistent with our model

prediction 3, SEZs are more effective at reducing carbon emissions in regions with greater access

to clean energy, where firms can more readily transition to greener energy sources.

8 Conclusion

This paper examines the impact of place-based policies that offer tax incentives to firms, focusing on

how these policies influence firms’ energy use and carbon emissions. Although SEZs are primarily

designed to stimulate economic growth, our findings reveal a significant but unintended outcome:

a substantial 25% reduction in carbon emissions among firms located within SEZs compared to

similar firms outside these zones. This decline in emissions is both notable and nuanced, driven

by a combination of factors. Our analysis shows that access to cleaner energy sources is a key

determinant of this reduction. Firms located in regions with rapidly expanding renewable energy

infrastructure experience more substantial declines in carbon emissions. Additionally, larger firms

demonstrate a greater capacity to adopt cleaner energy in response to SEZ incentives, likely due

to their superior production capacity and greater flexibility in adjusting energy use.

These findings present a cautiously optimistic view of the relationship between economic

development and environmental sustainability. Place-based policies like SEZs have the potential to

steer industrial sectors toward greener practices, promoting the adoption of advanced technologies

and renewable energy sources. By aligning economic incentives with environmental objectives,

SEZs can serve as a model for balancing growth with sustainability.

However, our study also highlights the complexity of assessing the environmental impacts of

place-based policies. The heterogeneous effects observed across regions and firm types under-
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score the need for targeted approaches to maximize environmental benefits. Policymakers should

consider regional energy availability, firm characteristics, and sectoral differences when designing

and implementing place-based policies. Future research should further explore other mechanisms

driving firms to reduce carbon emissions, particularly the role of technology adoption, regulatory

environments, and firm-level characteristics. Such insights will be valuable for designing industrial

and environmental policies that promote sustainable economic development.
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Figure 1: Event-Study Results
Notes: This figure presents the point estimates and their 95% confidence intervals for the event study
estimating Equation (2) where the dependent variable is log of annual carbon emissions at the firm-year
level. The model includes interaction terms between SEZ treatment and time dummies indicating 1-5 years
before the SEZ notification and 1-10 years after the notification, and controls for treatment-control pair,
industry (8-digit CMIE industry codes), state by year, and district fixed effects. The standard errors are
clustered at the district-year level.
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Figure 2: Heterogeneity Results: By Industry Group
Notes: This figure shows the point estimates for Equation (1) where the dependent variable is log of annual
carbon emissions and their 95% confidence intervals by industry group. We define five industry groups
based on 6-digit CMIE industry codes: Manufacturing, Non-Financial Services, Mining and Construction,
Financial Services, and Diversified. The estimation is based on the preferred model controlling for treatment-
control pair, industry (8-digit CMIE industry codes), state by year, and district fixed effects. Due to the small
sample size of the Diversified group, we obtain no estimate for this group. Therefore, it is omitted from the
figure. The standard errors are clustered at the district-year level.
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Figure 3: Heterogeneity Results: By Firm Size
Notes: This figure summarizes the point estimates for Equation (1) where the dependent variable is log of
annual carbon emissions and their 95% confidence intervals separately for two sub-groups based on firm
size deciles: firms in Deciles 1 through 5 and firms in Deciles 6 through 10. The estimation is based on
the preferred model controlling for treatment-control pair, industry (8-digit CMIE industry codes), state by
year, and district fixed effects. The standard errors are clustered at the district-year level.
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Table 1: Estimation Results: Total Carbon Emissions

(1) (2) (3) (4)

Log(Carbon Emissions)

𝛽 -0.2032*** -0.2758*** -0.2902*** -0.2901***
(0.0544) (0.0597) (0.0604) (0.0672)

N 28290 28290 28290 28290
R2 0.65 0.66 0.66 0.66

State-Year FE ✓ ✓
District FE ✓
District-Year FE ✓

Notes: This table shows the main estimation results using the spatial RD-DiD design. ∗𝑝 < 0.10 ∗ ∗𝑝 < 0.05 ∗ ∗ ∗ 𝑝 < 0.01.
Standard errors clustered at the district-year level are reported in parentheses. Column (1) presents the baseline model
which controls for treatment-control pair, industry (8-digit CMIE industry codes), year, and state fixed effects. Columns
(2) and (3) subsequently add state by year and district fixed effects, respectively. Column (4) reports the result adding
the district by year fixed effects to the baseline model.
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Table 2: Estimation Results: Assets, Income, Expenses, and Sales

(1) (2) (3) (4)
Total Assets Total Expenses Total Income Total Sales

Panel A. Prowess Firms Sample

SEZs 285.083*** 47.872** 60.223*** 59.232***
(77.451) (19.053) (22.410) (22.332)

N 23121 23121 23121 23121
𝑅2 0.37 0.34 0.34 0.34

Panel B. Empirical Analysis Sample

SEZs 11.559 13.942 17.955 15.194
(28.419) (15.294) (14.895) (13.459)

N 1043 1043 1043 1043
𝑅2 0.94 0.90 0.93 0.92

Notes: * p<0.10 ** p<0.05 *** p<0.01. Standard errors clustered at the district-year level are reported in the
parentheses. Total assets, expenses, income, and sales are measured in Indian Rupees (INR).
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Table 3: Estimation Results: Carbon Emissions by Energy Source

(1) (2) (3)

Emission from
Renewable

Log(Emission from
Conventional)

Share from
Renewable

𝛽 1.758** -0.314*** 0.510**
(0.752) (0.057) (0.205)

Notes: This table summarizes the estimation results by energy source. +𝑝 < 0.15 ∗ 𝑝 < 0.10 ∗ ∗𝑝 < 0.05 ∗ ∗ ∗ 𝑝 < 0.01.
Standard errors clustered at the district-year level are reported in parentheses. We differentiate emissions by their
sources, categorizing them as either conventional or renewable energy, and consider three additional outcome variables:
a) CO2 emissions from renewable energy, b) CO2 emissions from conventional energy (in logarithmic form), and c)
the share of emissions from renewable energy, calculated as CO2 Emission from Renewable/Total CO2 Emission. The
estimation is based on the preferred model controlling for year, state, treatment-control pair, industry (8-digit CMIE
industry codes), state by year, and district fixed effects. We use Poisson regression estimated by ppmlhdfe in Stata for
renewable energy emissions (Column 1) and the renewable energy share (Column 3).
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Table 4: Heterogeneity Results: By Region (1/2)

(1) (2)

Cluster 1 Cluster 2

𝛽 -0.104*** -0.041
(0.022) (0.054)

N 24075 4159
𝑅2 0.66 0.73

Notes: ∗𝑝 < 0.10 ∗ ∗𝑝 < 0.05 ∗ ∗ ∗ 𝑝 < 0.01. Standard errors clustered at the district-year level are reported in parentheses.
This table summarizes results for two regional clusters, factoring in India’s energy distribution. The estimation is based
on the preferred model controlling for year, state, treatment-control pair, industry (8-digit CMIE industry codes), state
by year, and district fixed effects. Cluster 1 includes the Northern, Southern, and Western Zonals, where renewable
energy is rapidly expanding and constitutes a relatively larger share of the total energy mix; Cluster 2 consists of North
Eastern, Eastern, and Central Zonals, where renewable energy has a smaller presence.
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Table 5: Heterogeneity Results: By Region (2/2)

(1) (2) (3) (4) (5) (6)

Northern North
Eastern

Central Eastern Western Southern

𝛽 -0.697*** 0.000 0.092 -0.081 -0.080*** -0.130***
(0.183) (.) (0.078) (0.065) (0.025) (0.044)

N 3908 74 1252 2832 13472 6694
𝑅2 0.71 0.90 0.86 0.68 0.63 0.75

Notes: ∗𝑝 < 0.10 ∗ ∗𝑝 < 0.05 ∗ ∗ ∗ 𝑝 < 0.01. Standard errors clustered at the district-year level are reported in parentheses.
This table reports the estimation results separately for six regions, adopting the definition of India’s administrative
regional (zonal) divisions. The estimation is based on the preferred model controlling for year, state, treatment-control
pair, industry (8-digit CMIE industry codes), state by year, and district fixed effects.
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A Appendix Figures
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A.1: SEZs in India
Notes: This figure plots the evolution of the number of notified SEZs (purple line) and their areas (yellow
bar) since the enactment of the SEZs Act in 2005.
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A.2: SEZs in India
Notes: This figure illustrates the geographic distribution of the notified SEZs across India. Districts with a
greater number of notified SEZs are shaded darker. The orange markers denote location of individual SEZs
across India.
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A.3: RD-DiD Matching Example
Notes: This figure illustrates the treatment, control, and leave-out zones in the analysis. Yellow squares
represent the treatment zones, which are the same size as reported in the SEZ notification. Grey areas
denote the “leave-out” zones, equivalent to a 2 km × 2 km square. The analysis sample is restricted to firms
within a 10 km × 10 km grid, indicated by the purple box.
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A.4: Robustness: Results of IPW
Notes: This figure plots the point estimates of Equation (2) and 95% Confidence Intervals using the inverse
probability weighting (IPW) method. Results are estimated by the csdid command in Stata. The y-axis
measures the log of annual carbon emissions at the firm level.
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A.5: The Share of Carbon Emission by Industry and Fuel Type
Notes: This figure plots the share of total carbon emission by industry group and fuel type. We classify
four industry groups as discussed in the main text: Manufacturing, Services (combining Financial and
Non-Financial), Mining and Construction, and Diversified, and three broadly-defined energy categories: a)
fossil fuel such as oil, coal, and natural gas, etc, b) electricity, and c) renewable energy including wind, solar,
and bioenergy (e.g., biogas or biomass), etc.
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A.6: Marginal Effects of SEZs on Carbon Emissions by Emitter Type
Notes: This figure plots the heterogeneous effects of SEZs on the logarithm of carbon emissions by emitter
type. Firms are ranked by their share of carbon emissions during the pre-treatment period and grouped into
quartiles. Point estimates and 95% confidence intervals of the marginal effects are reported. The estimation
results are based on the preferred model.
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A.7: Marginal Effects of SEZs on Carbon Emissions by Industry and Emitter Type
Notes: This figure plots the heterogeneous effects of SEZs on the logarithm of carbon emissions by emitter
type and industry. Firms are ranked by their share of carbon emissions during the pre-treatment period and
grouped into quartiles. Point estimates and 95% confidence intervals of the marginal effects are reported.
The estimation results are based on the preferred model. The number of firms in each industry group is as
follows: Manufacturing – 6,445; Non-Financial Services – 1,082; Mining and Construction – 179; Financial
Services – 405; and Diversified – 145.
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A.8: Installed Electricity Capacity (in MW) by Energy Source and Region
Notes: This figure shows the trend in installed electricity capacity (in MW) by energy source and region.
Data are sourced from ICED: https://iced.niti.gov.in/energy. The regional cluster definitions are consistent
with those used in the main analysis. The installed capacity data are only available from 2015 onward.
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A.9: India Zonal Divisions
Notes: India zonal divisions figure source: https://en.wikipedia.org/wiki/Administrative_divisio
ns_of_India. India’s administrative regional (zonal) divisions split the country into six regions. They are
Northern Zonal Council, comprising Chandigarh, Delhi, Haryana, Himachal Pradesh, Jammu and Kashmir,
Ladakh, Punjab, and Rajasthan; North Eastern Council, comprising Assam, Arunachal Pradesh, Manipur,
Meghalaya, Mizoram, Nagaland and Tripura; Central Zonal Council, comprising the States of Chhattisgarh,
Madhya Pradesh, Uttarakhand and Uttar Pradesh; Eastern Zonal Council, comprising Bihar, Jharkhand,
Odisha, and West Bengal; Western Zonal Council, comprising Dadra and Nagar Haveli and Daman and
Diu, Goa, Gujarat, and Maharashtra; Southern Zonal Council, comprising Andhra Pradesh, Karnataka,
Kerala, Puducherry, Tamil Nadu, and Telangana.
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B Appendix Tables

B.1: Carbon Emission Factors

Energy Source kg CO2 per unit of
Energy Source

Unit of Energy Source kg CO2 per MMBtu of
Energy Source

(1) (2) (3) (4)

Agricultural Byproducts 975 short ton 118.17
Biodiesel (100%) 9.45 gallon 73.84
Biogas (Captured Methane) 0.044 scf 52.07
Bituminous Coal 2325 short ton 93.28
Coal Coke 2819 short ton 113.67
Coke Oven Gas 0.03 scf 46.85
Crude Oil 10.29 gallon 74.54
Distillate Fuel Oil No.1 10.18 gallon 73.25
Distillate Fuel Oil No.2 10.21 gallon 73.96
Fuel Gas 0.08 scf 59
Heavy Gas Oils 11.09 gallon 74.92
Kerosene 10.15 gallon 75.2
Lignite Coal 1389 short ton 97.72
Liquefied Petroleum Gases (LPG) 5.68 gallon 61.71
Lubricants 10.69 gallon 74.27
Mixed (Electric Power Sector) 1885 short ton 95.52
Mixed (Industrial Sector) 2116 short ton 94.67
Motor Gasoline 8.78 gallon 70.22
Naphtha (<401 deg F) 8.5 gallon 68.02
Natural Gas 0.05 scf 53.06
Natural Gasoline 7.36 gallon 66.88
Other Biomass Gases 0.03 scf 52.07
Peat 895 short ton 111.84
Petroleum Coke (Solid) 3072 short ton 102.41
Propane 5.72 gallon 62.87
Rendered Animal Fat 8.88 gallon 71.06
Residual Fuel Oil No.5 10.21 gallon 72.93
Residual Fuel Oil No.6 11.27 gallon 75.1
Solid Byproducts 1096 short ton 105.51
Wood and Wood Residuals 1640 short ton 93.8
Electricity (Coal) 95.52
Electricity (Oil/Gas) 74.29

Notes: This table summarizes the carbon emission factors by energy source used in this paper. Factors in the last two
rows are calculated as described in the data appendix, while all other numbers come from the EPA’s GHG Emission
Factors Hub (https://www.epa.gov/climateleadership/ghg-emission-factors-hub).
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B.2: Summary Statistics

(1) (2) (3) (4) (5)

Variable Obs Mean Std. Dev. Min Max

CO2 Emission (Metric Ton) 80,070 21856.65 4722007 0 1,320,000,000
Log(CO2 Emission) 78,600 2.70 2.52 -14.03 27.91
CO2 Emission from Renewable 79,964 22.32 2277.12 0 443668.5
CO2 Emission from Conventional 79,909 21900 4730000 0 1,320,000,000
Share from Renewable 78,600 0.02 0.10 0 1
Log(CO2 Emission from Renewable) 80,070 0.13 0.74 -14.57 13.00
Log(CO2 Emission from Conventional) 80,070 2.62 2.52 -14.03 27.91
Total Population, District (in 1 million) 79,765 4.36 2.64 0.14 11.06
Log(Total Population) 79,765 15.08 0.72 11.86 16.22

Freq. Percent

Firm Age
Before 1950 8,374 10.46
Between 1951 and 1971 8,714 10.88
Between 1972 and 1985 21,295 26.6
Between 1986 and 1990 13,297 16.61
After 1991 28,389 35.46

Between 1991 and 2000 21,547 26.91
Between 2001 and 2005 4,296 5.37
After 2006 2,547 3.18

Size by Decile
Decile 1 13,391 16.72
Decile 2 12,897 16.11
Decile 3 11,233 14.03
Decile 4 10,120 12.64
Decile 5 9,724 12.14
Decile 6 8,128 10.15
Decile 7 5,808 7.25
Decile 8 4,186 5.23
Decile 9 2,953 3.69
Decile 10 1,606 2.01

Entity type
Associations/Federations 9 0.01
Co-operatives 7 0.01
Departmental undertakings/Boards 2 0
Foreign Entities 1 0
Governments 18 0.02
Partnership firms 8 0.01
Private Ltd. 14,559 18.18

Continued on next page
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Continued

Freq. Percent

Public Ltd. 65,450 81.74
Trusts 7 0.01
Unlimited Liabilities 9 0.01

CMIE 6-digits
Manufacturing 64,800 80.93
Mining 697 0.87
Electricity 197 0.25
Services (other than financial) 8,514 10.63
Construction & real estate 744 0.93
Asset financing services 40 0.05
Other fund based financial 3,663 4.57
Fee based financial services 2 0
Other financial services 24 0.03
Diversified financial services 234 0.29
Diversified 1,155 1.44

N 80070

Notes: This table reports the summary statistics for the analysis sample.
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B.3: Summary Statistics by Treatment Status

(1) (2) (3) (4) (5) (6)

Treatment Group Control Group Control-Treatment

Mean Std. Mean Std. Diff. t-stats

Log(CO2 Emission) 2.483 2.695 2.695 2.501 0.212*** (5.947)
Firm Age 3.555 1.248 3.560 1.361 0.005 (0.277)
Size Decile 3.996 2.491 4.207 2.430 0.211*** (6.437)
Entity Type 2.136 0.349 2.189 0.392 0.053*** (11.329)
CMIE 6-digits 1.897 1.935 1.794 1.921 -0.103*** (-4.043)

N 6328 62426 68754

Notes: ∗𝑝 < 0.10 ∗ ∗𝑝 < 0.05 ∗ ∗ ∗ 𝑝 < 0.01. This table reports the summary statistics by treatment status and the results of
t-test for the difference between the two groups.
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B.4: Differences in Firm Attributes by Treatment Status, Matched v.s. Unmatched Sample

(1) (2) (3) (4)

Firm Age Size Decile Entity Type CMIE 6-digits

Unmatched Sample

SEZs -0.0046 -0.211*** -0.053*** 0.103***
(0.0166) (0.0328) (0.0047) (0.0255)

N 68753 68730 68754 68754
Pair FEs 𝑁𝑜 𝑁𝑜 𝑁𝑜 𝑁𝑜

Matched Sample

SEZs -0.0063 0.0042 0.0244 0.1047
(0.0412) (0.0585) (0.0301) (0.1746)

N 38817 38817 38817 38817
Pair FEs 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠 𝑌𝑒𝑠

Notes: ∗𝑝 < 0.10 ∗ ∗𝑝 < 0.05 ∗ ∗ ∗ 𝑝 < 0.01. This table reports the results regressing firm attributes on the within SEZs
indicator separately for matched and unmatched samples, where for the matched sample, pair FEs are included.
Standard errors are reported in parentheses. For the unmatched sample, we report robust standard errors, as the model
includes no fixed effects or control variables, and the estimates simply reflect the sample mean difference between the
treatment and control groups. For the matched sample, we report clustered standard errors at the treatment-control
pair level.
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B.5: Robustness Check

(1) (2) (3) (4) (5) (6) (7) (8)

Log(Carbon Emissions)

𝛽 -0.290** -0.290*** -0.290** -0.358*** -0.308*** -0.316*** -0.413*** -0.350***
(0.139) (0.074) (0.126) (0.068) (0.064) (0.059) (0.073) (0.071)

N 28239 28239 28239 25619 27233 33932 22177 16482
R2 0.66 0.66 0.66 0.68 0.67 0.64 0.70 0.72

Cluster-Level Pair State + Year Firm
Sub-Sample Inc. Yr ≤ 2000 Inc. Yr ≤ 2005
Sample Zone 10 km 10 km 10 km 10 km 10 km 10 km 5 km 5 km
Leave-out Zone 2 km 2 km 2 km 2 km 2 km 1 km 1 km 2 km

Note: This table summarizes the results of robustness check. Standard errors in parentheses. Unless otherwise specified, standard errors clustered at the
district-year level are reported. * 𝑝 < 0.10, **𝑝 < 0.05, *** 𝑝 < 0.01. Columns (1) to (3) report the results with standard errors clustered at treatment-control pair,
state and year, and district and year levels, respectively. Columns (4) and (5) re-estimate the preferred model on sub-samples of firms incorporated before 2000
or 2005. Columns (6) to (8) experiment with different sample zones, such as a 5 km zone, and different leave-out zones, such as a 1 km zone.
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C Data Construction

In this appendix, we provide more details about the data sources and data construction process.
Firm-level energy use data comes from Prowess. The annual total energy consumption is

reported by energy source, each with its corresponding unit. For example, a firm that consumed
electricity and coal in a given year would have two separate records: one for the number of
kilowatt-hours (kWhs) of electricity and another for the number of metric tonnes of coal.

To calculate the annual total carbon emissions from the total energy consumption, similar to
Barrows and Ollivier (2018), we assign a source-specific carbon dioxide emission factor to each
energy source type.12 Several steps involved in this process. First, we match and create a crosswalk
between the energy source types reported in Prowess and the energy categories listed in the EPA’s
emission factors table. 127 over 148 (86%) energy sources in the Prowess are matched to the emission
factors table. Then, we standardize the unit of measurement for each type of energy source with
the unit of the corresponding emission factor and assign a conversion factor for each energy source-
unit pair. We are unable to standardize the energy units for 182 energy source-unit pairs (over 852
total pairs) due to missing observations of the measurement unit and typos in the measurement
unit. For example, in some cases, the unit of coal is measured in “Liters” or “Kiloliters”, which
are volume measures typically used for liquids or fluids. Without knowing the density of the coal
being used, it is difficult to convert a volume measure to a weight measure.

It is worth noting that unlike Barrows and Ollivier (2018) which assign a single carbon emission
factor to the energy source type “electricity”, we distinguish electricity purchased by the firm and
electricity generated by the firm from various sources, such as coal, gas and oil, and biomass fuels.
Emissions from electricity generation vary by types of energy source. For example, electricity
generated by the so-called green energy, such as solar and wind, produces zero direct carbon
emission, while electricity generated by conventional fuels, such as coal and natural gas, emits
carbon dioxide ranging from 0.35 kg/kWh to 0.87 kg/kWh (Schlömer et al. 2014), depending on
the type and efficiency of electric power plants. In other words, electricity generated by solar or
wind and electricity generated by coal or natural gas are essentially two energy products in terms
of carbon emissions and should be recognized as two different energy source types.

In our practice, we define four energy source types for electricity: purchased electricity, elec-
tricity generated by coal, electricity generated by oil or gas, and electricity generated by biomass,
solar, or wind. For the fourth category, the carbon emission factor is zero, according to IPCC’s es-
timate. To obtain the carbon emission factor for electricity generated by coal (the second category)
and oil or gas (the third category), we adopt the following steps. First, we collect data on India’s
electricity generation by energy source and fuel consumption from the India Climate and Energy
Dashboard (ICED).13 These data allow us to calculate the average amount of fuel (e.g., coal, natural
gas, or oil) needed to generate one kWh of electricity in India. Then, we transform the amount
of fuel to the heating content (measured in million British thermal units, MMBtu) and multiply it
by the carbon emission factor of the corresponding fuel (which is measured in kg/MMBtu). For
example, in India, the average amount of coal needed to generate one kWh of electricity is about
1.54 pound (averaged over years from 2012 to 2019), with a heating value equivalent to about 0.0219
MMBtu. The carbon emission factor for coal used in electric power sector is 95.52 kg/MMBtu.

12Following existing literature, we adopt the emission factors provided by the US Environmental Protection Agency
(EPA). Appendix Table B1. summarized these factors.
13Data source: https://iced.niti.gov.in.
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By multiplying the number of coals needed by 95.52, we can obtain the carbon emissions for one
kWh electricity generated by coal. We conduct this calculation separately for coal and gas/oil by
year, to capture the temporal variation in the efficiency of electricity generation in India.14 Note
that in this calculation, we assume that the electricity generation within a firm is as efficient as
in a representative electric power plant with average efficiency. It is likely that the efficiency of
electricity generation is lower than that of a power plant, possibly due to differences in technology
and a lack of economic scale. In that case, our calculation would provide a lower bound estimation
of the carbon emissions for electricity generated by firms from various energy sources. Moreover,
for purchased electricity, we gather annual data on electricity consumption by power source (e.g.,
coal, oil/gas, nuclear, etc.) from ICED and compute the share of electricity consumption for coal
and oil/gas. Then, we compute the average emission for purchased electricity as a weighted
average of the calculated carbon emission for generating one kWh of electricity by energy source,
using the share of electricity consumption by power source as the weight. This calculation is also
conducted at the national-year level.

In total, we have 216,686 observations of the firm-energy source-year pair for 8256 unique firms
spanning 1988 to 2021. There are 146 observations missing the quantity of energy consumption
and 13368 observations for which we cannot assign a carbon emission factor. We drop those
observations, which consists of about 6% of the data.

14Since the electricity generation data is only available from 2012 to 2019, we approximate the amount of fuel needed
for generating a kWh of electricity before 2012 and after 2019 using the 2012 and 2019 statistics, respectively.
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