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Abstract

Despite pathophysiological evidence linking pollution to human physical and cogni-
tive functioning, little is known about the economic consequences of such impacts.
This paper fills this gap by investigating the causal effect of air pollution on worker
health and workplace safety. Using a novel dataset combining high-frequency air
pollution and meteorological data with workplace injury records from Florida and
leveraging exogenous variations in pollution caused by temperature inversions, I find
that PM2.5 significantly increases workplace injuries. The effect is nonlinear, increasing
with rising pollution levels, and shows a non-negligible impact even at mild pollution
levels below the current regulatory standards.
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1 Introduction

Air pollution is a global environmental problem with far-reaching impacts on human

health and economic development in both developing and developed countries. While

low- and middle-income countries like India and China bear a disproportionate burden

of such pollution, in the era of global warming, extreme weather events such as wildfires

and droughts have been increasing both the frequency and extent of air pollution in

high-income countries, presenting new challenges for air pollution control.

As a result, there is a growing interest among the public and economists in the impact

of air pollution. While the adverse effects of air pollution on mortality and public health

are well-documented (Deryugina et al. 2019; Anderson 2020, among others), relatively

little is known about its impact beyond the direct health implications, especially on the

labor market and labor productivity. A growing body of research is shifting its focus from

the general health impacts to a wide range of “non-health” outcomes (see Aguilar-Gomez

et al. 2022, for a detailed review), studying outcomes such as labor supply (Hanna and

Oliva 2015), game performance and decision-making (e.g., Künn, Palacios, and Pestel 2023;

Huang, Xu, and Yu 2020), as well as academic performance (e.g., Bharadwaj et al. 2017;

Ebenstein, Lavy, and Roth 2016; Heissel, Persico, and Simon 2022). Among these studies,

a few have investigated worker productivity, including Graff Zivin and Neidell (2012),

Chang et al. (2019), and He, Liu, and Salvo (2019). However, these studies primarily

measure worker productivity by wages and piece-rate outputs, and mainly focus on the

agricultural and manufacturing sectors in developing countries.

In this paper, I construct a novel panel dataset from the United States to investigate

the causal impact of air pollution on worker health and workplace safety, key aspects of

labor productivity. The dataset combines administrative workers’ compensation (WC)

data from Florida, which contains precise information on the location and date of work-

place injuries, with high-resolution data on air pollution and meteorological variables.

Workplace safety and worker health are important yet surprisingly understudied factors

in labor productivity. While early studies, such as Hausman, Ostro, and Wise (1984),
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Ostro (1983), Pönkä (1990), and Hansen and Selte (2000), have found positive correlation

between air pollution and sick leave and work loss, a causal link is yet to be established.

Moreover, workplace injuries are costly and can lead to significant productivity losses.

Severe injuries that involve hospitalization and amputation often result in work absences

lasting from days to weeks. Productivity losses, along with workers’ compensation pay-

ments and medical expenses incurred because of work-related deaths and injuries, cost

the U.S. more than $234 billion in 2018 (National Safety Council; Weiss, Murphy, and

Boden 2020).

Fine particulate matter, known as PM2.5, and ozone have been found to be linked with

various acute health events, such as respiratory and cardiovascular conditions, due to their

ability to penetrate deep into the lungs, bloodstream, and brain. Depending on the level of

exposure, PM2.5 and ozone can also lead to a number of subclinical symptoms that do not

necessitate health care visits but may result in reduced cognitive and physical functioning.

Typical symptoms include fatigue, impatience, irritability, altered motor activity, inatten-

tion, and distraction (Delgado-Saborit et al. 2021; Chang et al. 2016). Job tasks, especially

in high-risk occupations, demand attention, resilience, mental stability, physical strength,

and endurance. Therefore, in addition to affecting visibility, air pollution—particularly

PM2.5 and ozone—can influence workplace injuries and health by reducing physical and

cognitive abilities through biological channels.

Pinning down the causal effect of air pollution is challenging, because it is not randomly

assigned across space or workplaces. Air pollution is likely endogenous, and standard

estimates may suffer from omitted variable bias and selection bias. A typical solution is

to apply the instrumental variable (IV) method. For an IV to be valid, it must be relevant

to the treatment variable, affecting air pollution in a nonnegligible way, and satisfy the

exclusion restriction—meaning it should be uncorrelated with workplace injuries except

through its effect on air pollution. This paper employs an arguably valid instrument,

leveraging plausibly exogenous variations in air pollution driven by atmospheric temper-

ature inversion episodes to identify the causal impact of general air pollution—pollution
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caused by various reasons, including but not limited to wildfires. Temperature inversion

is a canonical instrument for air pollution in environmental economics studies (Sager 2019;

Jans, Johansson, and Nilsson 2018; Arceo, Hanna, and Oliva 2016). It refers to a natu-

ral phenomenon where warmer air at higher altitudes traps cooler air near the surface,

preventing pollutants from rising and keeping them close to the ground. Since tempera-

ture inversion episodes occur at high altitudes and are generally invisible to individuals,

they are unlikely to affect economic activities or workplace injuries, making them a valid

instrumental variable.

This paper provides rigorous causal evidence that PM2.5 and ozone pollution signif-

icantly impact workplace injuries in Florida. The estimated effects of PM2.5 exhibit a

non-linear pattern, with the impact increasing with rising pollution levels. Specifically, a

one-unit increase in PM2.5 at 12 𝜇𝑔/𝑚3 is associated with an increase in WC claims per

1 million population by 0.8 percentage points (equivalent to a 2% increase relative to the

sample mean claim rate). This effect is significantly greater for PM2.5 at 30 𝜇𝑔/𝑚3, to be

approximately 8 percentage points and equivalent to a 21% increase. In comparison, the

effect of ozone pollution is linear and relatively smaller compared to the effect of PM2.5.

A 10-ppb increase in ozone is found to increase WC claims per 1 million population by 0.7

percentage points, equivalent to an increase of around 2% relative to the baseline sample

mean. Including additional controls for air pollution lags, I find no evidence of lagged

or cumulative impacts, indicating that the estimated effects are primarily driven by acute

exposure.

By analyzing the impacts across different injury categories defined by their nature and

cause, I find that the effect of PM2.5 and ozone is primarily driven by increases in trau-

matic injuries rather than in respiratory, cardiovascular, or mental conditions. Addition-

ally, these pollutants are more strongly associated with injuries resulting from cognitive-

related issues, such as falls, slips, cuts, and being caught in machinery, rather than with

injuries from other causes, such as heat or cold exposure, gunshots, or natural disasters.

These findings support the hypothesis that reductions in physical and cognitive functions
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associated with air pollution are likely the driving force behind increased injury risks.

Based on these results, I evaluate the monetary costs associated with workplace injuries

caused by air pollution, focusing on its impact on workers’ compensation costs. A back-

of-the-envelope calculation suggests a substantial increase in WC payments due to air

pollution. For instance, a single day of a 10-𝜇𝑔/𝑚3 increase in PM2.5 across Florida is

estimated to cause 247 additional workplace injuries per 1 million population and result

in an increase in WC costs by more than $200 million.

This paper contributes to the literature in several ways. First, this work links air

pollution and worker health and workplace safety, documenting a significant impact of air

pollution on workplace injuries in Florida. It broadly enriches research on environmental

hazards and workplace safety by revealing the impact of a new crucial risk factor for

workplace safety and an additional outcome where air pollution has significant adverse

effects.

In addition, this paper explores a channel through which air pollution affects labor

productivity: by increasing workplace injuries. In this way, it contributes to the emerging

literature on the so-called “non-health” effects of environmental hazards (such as, Chang

et al. 2016; Graff Zivin and Neidell 2012; Park, Pankratz, and Behrer 2021, among others)

by demonstrating that, beyond affecting worker productivity—typically measured by

wages and piece-rate outputs—as well as academic and game performance as previously

reported, air pollution can also influence workers’ on-the-job performance and increase

the risk of workplace injuries.

Furthermore, most prior works provided evidence based on case studies, restricting

the sample to a single firm or a small geographical area. Analyses in this paper are based

on comprehensive workers’ compensation claims data, which includes precise temporal

and geographic information on workplace accidents and injuries from a universe of claim

records in Florida spanning an 18-year period (2002–2019). It provides rigorous evidence

from a large-scale representative sample within the state. This work complements three

contemporaneous studies on air pollution and workplace safety in different contexts:
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Lavy, Rachkovski, and Yoresh (2022), who examine the impact of NO2 on accidents at

construction sites in Israel; Curci, Depalo, and Palma (2023), who analyze the impact of

PM10 on work-related disabilities in eight regions of Italy, using winter heating regulations

as an IV; and Cabral and Dillender (2024), who explore the effect of PM2.5 from wildfire

smoke on workplace injuries in Texas.

Lastly, this study has important implications for informing policymaking. First, by

linking air pollution and workplace safety, this paper suggests that improving air quality

can potentially benefit both employers and employees. Ignoring the effect of air pollution

on workplace safety likely underestimates these benefits of air quality improvement.

Additionally, echoing policy discussions on whether to strengthen the EPA’s National

Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM), the substantial

impacts of daily ambient PM2.5 at levels below the EPA’s regulatory standards found

in this study support the suggestion to further reduce the 24-hour NAAQS standards.

Furthermore, this paper provides robust evidence of the adverse impacts of PM2.5 and

ozone on worker health and workplace safety. By highlighting the significant harms

caused by air pollution, it informs OSHA in shaping policies to address workers’ exposure

to air pollution and encourages a thorough evaluation of optimal regulatory measures to

mitigate associated risks. Specifically, the greater impacts found at higher PM2.5 levels

and in poorer neighborhoods, along with the heterogeneous effects across PM2.5 and

ozone, imply potential benefits in allocating limited regulatory resources towards these

hot-spot regions and specific air pollutants, such as PM2.5.

The rest of the paper is organized as follows. In Section 2, I introduce fine particulate

matter and ozone, discuss the biological mechanisms through which air pollution impacts

workplace injuries, and review existing literature on the health and productivity effects

of air pollution. Section 3 describes the data. Section 4 illustrates the empirical strategy.

Primary results are presented in Section 5. In Section 6, based on the main results, I

evaluate the economic cost of air pollution, focusing on the costs associated with workers’

compensation. Section 7 concludes.
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2 Background

In this section, I start by discussing how air pollution—especially fine particulate matter

and ozone pollution—impacts job performance and workplace safety through biological

mechanisms. Next, I summarize existing literature on the effects of air pollution on health

and labor productivity.

Fine particulate matter and ground-level ozone are two major global air pollutants in

modern society. Particulate matter (PM) is a mixture of solid particles and liquid droplets

found in ambient air, which varies greatly in size and composition. Fine particulate matter

(PM2.5) refers to particles with a nominal mean aerodynamic diameter of up to 2.5 mi-

crometers. Thus, PM2.5 is typically invisible and can easily infiltrate indoor environments

through ventilation systems and by penetrating the building envelope. Ground-level

ozone (O3) is the major component of haze and smog, and is formed primarily from pho-

tochemical reactions between two air pollutants — volatile organic compounds (VOC) and

nitrogen oxides (NO𝑥).

PM2.5 and ozone are found to have serious adverse health effects due to its ability to

penetrate deep into the lungs, blood streams and brain. PM2.5 and ozone can damage

the tissues of the respiratory tract, irritate and corrode the walls of the alveoli (tiny air

sacs), resulting in decreased lung function, aggravated asthma, and inflammation of the

airways. Apart from contributing to respiratory conditions, PM2.5 and ozone are linked to

cardiovascular diseases. When translocating into systemic circulation, PM2.5 and ozone

can trigger systemic inflammation, impair the coagulation process, damage blood vessels,

and lead to metabolic disorders.1

Depending on the level of exposure, PM2.5 and ozone can also lead to more subtle

effects, such as changes in blood pressure, irritation in the eyes, ear, nose, throat, and skin,

and mild headaches (Pope 2000; Auchincloss et al. 2008). These milder effects, resulting

from exposure to lower levels of pollution, typically do not necessitate health care visits but

1For a comprehensive review on the adverse health effects of PM2.5 and ozone and their pathophysiological
mechanisms, see EPA (2009, 2019), Kim, Kim, and Kim (2020), Zhang, Wei, and Fang (2019), Hua et al. (2024),
and Feng et al. (2023).
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may be linked to reduced functioning in several key body systems. Affected individuals

might experience fatigue, impatience, irritability, altered motor activity, inattention, and

distraction (Delgado-Saborit et al. 2021; Chang et al. 2016).

Moreover, epidemiologists have found growing evidence documenting the impacts of

PM2.5 and ozone on human cognitive ability. These pollutants, through both chronic

and acute exposure, have been shown to impair cognitive functions, including memory,

attention, and fluid reasoning (e.g., Guxens et al. 2018; Peters et al. 2000; La Nauze and

Severnini 2021; Bedi et al. 2021; Singh et al. 2022; Schikowski and Altuğ 2020; Shehab and

Pope 2019) and affect mental well-being and regulation (Weuve et al. 2012; Prado Bert

et al. 2018; Bernardini et al. 2020; Zhao et al. 2018; Zhao et al. 2020; Nguyen, Malig, and

Basu 2021).

The decline in physical and cognitive functions is likely linked to a higher risk of

workplace accidents and injuries. Job tasks, especially in high-risk occupations, demand

attention, focus, resilience, mental stability, physical strength, and endurance. Even minor

faults and misjudgments caused by inattention, fatigue, distraction, or overexertion can

result in accidents and injuries. A similar link between environment-driven cognitive and

physical impairment and an increased risk of injuries has been found in previous studies

examining the impact of heat on workplace injuries (e.g., Park, Pankratz, and Behrer 2021;

Dillender 2021) and the effect of PM2.5 on road accidents (Sager 2019).

Mounting research has investigated the adverse impacts of air pollution on health and

labor productivity, providing evidence from various contexts. First, there is extensive

evidence indicates that air pollution raises mortality and hospitalization rates, especially

among children and the elderly (see, for example, Deryugina et al. 2019; Anderson 2020;

Alexander and Schwandt 2022; Moretti and Neidell 2011). The available evidence is based

on a variety of air pollutants, not limited to PM2.5 and ozone, but extending to carbon

monoxide (Currie, Neidell, and Schmieder 2009; Currie and Neidell 2005; Schlenker

and Walker 2016; Knittel, Miller, and Sanders 2016), total suspended particulates (Chay

and Greenstone 2003; Chay, Dobkin, and Greenstone 2003), nitrogen oxides (Deschenes,
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Greenstone, and Shapiro 2017), and sulfur dioxide (Deryugina and Reif 2023). Beyond

the impact on population health, a growing body of research is shifting its focus from the

general health impact to a wide range of “non-health” outcomes.2 These “non-health”

outcomes include: worker productivity of agricultural workers (Graff Zivin and Neidell

2012), call center workers (Chang et al. 2019), and manufacturing workers (He, Liu, and

Salvo 2019), labor supply (Hanna and Oliva 2015), school performance (Bharadwaj et

al. 2017; Zhang, Chen, and Zhang 2018; Ebenstein, Lavy, and Roth 2016; Heissel, Persico,

and Simon 2022), game performance (Künn, Palacios, and Pestel 2023) and decision making

(Huang, Xu, and Yu 2020), mental health (Persico and Marcotte 2022; Molitor, Mullins,

and White 2023), and crime (Burkhardt et al. 2019; Herrnstadt et al. 2021). In these studies,

reductions in cognitive and physical function are identified as the primary mechanisms

contributing to the effect of air pollution.

Taken together, existing literature has demonstrated that air pollution has significant

effects on human health, leading to both acute health events and subclinical symptoms.

Especially, declines in cognitive and physical functioning resulting from air pollution have

been shown to impact individual performance across various scenarios, which plays a cru-

cial role in shaping worker productivity. The evidence comes from various occupations

spanning manufacturing, services, and agricultural sectors, across multiple regions cov-

ering developed and developing economies, and both indoor and outdoor environments,

suggesting a widespread impact.

3 Data

In this paper, I measure workplace safety and health at work by the workplace injury

rate, established from a longitudinal panel drawing on unique administrative data on

workers’ compensation (WC) claims for Florida. The WC claim data is acquired through

open data requests from Florida’s Department of Financial Services, Division of Workers’

Compensation. Each WC claim record consists of information collected on the DWC-1

2See Aguilar-Gomez et al. (2022) for a comprehensive review.
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form, also known as the First Report of Injury or Illness (FROI) Form, which reports the

date of the accident associated with the claim, county and ZIP code of the accident, and

injury characteristics, such as cause of injury, nature of injury, and the injured body codes.

I collected claim records from January 2001 (the earliest available year) to December 2019

(the latest pre-COVID year).3

Workers’ compensation offers cash benefits and/or medical care to employees who are

injured or become ill “in the course and scope” of their job. Available benefits include

medical treatment and full coverage of medical expenses, partial reimbursement of lost

wages, compensation for temporary and permanent disability, and compensation to ben-

eficiaries in case of a workplace fatality. The WC insurance is mandatory for employers

conducting work in Florida.4

Based on the claim data, I create two outcome variables. The WC claim rate is con-

structed by aggregating the claims by ZIP code and date, and calculating the rate per

1,000,000 population.5 Alternatively, I define a binary variable indicating the occurrence

of workplace accident associated with WC claims at the ZIP code and date level and create

the accident rate variable per 1,000,000 population. The empirical analyses are therefore

conducted at the ZIP code by date level. One benefit of using the Florida WC claim data

is that it consists of the exact geographical and temporal information of the accidents

associated with the claims, which allows researchers to link the claim data to air pollution

and weather data. Moreover, analyzing data at the ZIP code level rather than larger units

such as commuting zones or counties allows for a more accurate assessment of ambient

air pollution and local climate conditions at the locations where accidents occur, thereby

reducing measurement errors.

3Additionally, I restrict the analysis to accidents that occurred within Florida. There is a small share of
claims (less than 1%) involving accidents overseas or in unincorporated organized territories such as Puerto
Rico and the Virgin Islands. Excluding these accidents may underestimate the impact of air pollution.

4Employers with one or more employees in the construction industry, with four or more employees in
non-construction industries, and with six regular employees; and/or twelve seasonal workers who work
more than 30 days during a season and/or more than a total of 45 days in the same calendar year must
provide workers’ compensation insurance for their employees. Source: https://www.myfloridacfo.com/
division/wc/employer/coverage-requirements.

5Population counts are based on the 2000 and 2010 U.S. Census, downloaded from https://www.census
.gov/en.html.
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Next, I combine the WC claim data with high-resolution air pollution data and consider

two major air pollutants, PM2.5 and ozone. Daily air pollution data for PM2.5 and

ozone are retrieved from EPA’s Fused Air Quality Surface Using Downscaling (FAQSD)

dataset.6 FAQSD is a scientific re-analysis dataset based on the EPA’s Bayesian space-time

downscaler model that projects station-based atmospheric variables to outputs at a finer

scale. The model leverages air monitoring data from national, state, and local stations,

along with emission and meteorological data from the Community Multiscale Air Quality

(CMAQ) model. It incorporates meteorological conditions, such as wind, temperature,

pressure, humidity, cloud formation, and precipitation rates and emissions, including

aerosols and volatile organic compounds (VOCs).7

FAQSD provides a daily measure of ambient PM2.5 and ozone gridded on 12 km grids.

The earliest available year is 2002. I collect PM2.5 and ozone data from 2002 to 2019 and

aggregate them to the ZIP code and date level by taking the average over all grids lying

within each ZIP code boundary.

In addition, I control for time-varying near-surface meteorological conditions by ex-

tracting daily climate data, including total precipitation (rain and melted snow), maxi-

mum, minimum, and average air temperatures, as well as dew point temperature, from

the PRISM spatial climate datasets (Daly et al. 2008).8 The PRISM data are measured at 4

km grids. Similar to the air pollution data, I aggregate the 4-km resolution daily weather

covariates to the ZIP code-day level.

Air pollution is not randomly assigned across space or workplaces, rendering it en-

dogenous for the workplace safety outcome. To address the issue of potential endogeneity

of air pollution variables, I follow the environmental economics literature and adopt an

6FAQSD output files are downloaded via EPA RSIG website https://www.epa.gov/hesc/rsig-related-
downloadable-data-files.

7The CMAQ is designed to manage multipollutant interactions simultaneously and simulate a wide range
of chemical reactions, including the catalytic cycling of nitrogen oxides (NO𝑥) and VOCs in the formation
and breakdown of ozone.

8PRISM data is downloaded from the portal of Northwest Alliance for Computational Science & Engi-
neering (https://prism.oregonstate.edu/recent/. The PRISM datasets are developed by the PRISM climate
group based on climate observations from a wide range of monitoring networks, applying the Parameter-
elevation Relationships on Independent Slopes Model (PRISM) with sophisticated quality control measures.
See https://prism.oregonstate.edu for more information.
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instrumental variable strategy. The atmospheric temperature inversion is a canonical in-

strument for air pollution in environmental economics studies. For example, Sager (2019),

Jans, Johansson, and Nilsson (2018), and Arceo, Hanna, and Oliva (2016), among others,

use the temperature inversion as an instrument for air pollutants such as PM10, PM2.5,

and CO. In general, temperature tends to decrease with altitude. However, it increases

with altitude during inversion episodes because warmer air at higher altitudes confines

cooler air near the surface. As a consequence, this prevents pollutants from rising and

dispersing, trapping them close to the ground. This type of instrument produces arguably

exogenous variations in air pollution.

I follow Sager (2019) and collect air temperatures at the 925hPa and 950hPa pressure

levels and the surface level at 3 am local time for Florida from NASA’s MERRA-2 climate

reanalysis product (Global Modeling and Assimilation Office 2015).9 The temperature

inversion IVs are then defined similarly as those in Sager (2019) as continuous variables

equal to the difference in air temperature between a certain pressure level (925hPa or

950hPa) and the surface level. As shown in the summary statistics Table 1, the propensity

of temperature inversion episodes in Florida at the 925hPa or 950hPa pressure level is

approximately 4%.

The final use data covers 1506 ZIP code zones in Florida spanning years 2002 to 2019.

Table 1 reports the summary statistics. The sample average of WC claims per 1 million

population is about 0.39, with the average workplace accident rate per 1 million population

at around a similar level at 0.34. Figure 1 presents the distribution of the total number of

WC claims across ZIP code zones from 2001 to 2019. The darker the color, the greater the

number of claims. In total, there are 1,036,999 claims reported. Clearly, these claims are

not evenly distributed: they are more prevalent in densely populated areas with greater

economic activity. For air pollution, the sample mean PM2.5 level is approximately 8

𝜇𝑔/𝑚3, ranging from 0 𝜇𝑔/𝑚3 to as high as 125 𝜇𝑔/𝑚3, while for ozone pollution, the

9Therefore, the temperature inversion variable essentially captures “night-time” inversion episodes. The
advantage of using the night-time temperature inversion variable, a lagged measure, is that it helps to avoid
the potential direct impact of temperature inversions on economic activities during the day, which could
threaten the exclusion restriction. Moreover, temperature inversions are more frequent at night.
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sample mean level is at about 38 parts per billion (ppb) with the highest level at around

102 ppb.

4 Research Design

Pinning down the causal effect of air pollution is challenging because air pollution is

likely endogenous, and a simple OLS model may suffer from omitted variable bias and

selection bias. For instance, the intensity of economic activities are correlated with both

pollution and workplace accidents, raising concerns of omitted variable bias. Workers

and employers can adjust the extent of exposure to pollution by, for example, changing

the work schedule, calling in sick, or taking a longer lunch break. Such responses affect

the incidence of workplace injuries, assuming the likelihood of workplace accidents is

correlated with the length of time workers spend at work. Moreover, if the responses of

workers and employers differ across locations due to unobserved factors, e.g., workers

are more cautious in polluted places and thus their labor supply is more sensitive to air

quality deterioration, then standard estimates may suffer from selection bias.

A typical solution is to apply the instrumental variable (IV) method. For an instru-

mental variable to be a valid instrument, it must be relevant to the treatment variable, i.e.,

it must affect the endogenous variable—in this setting, air pollution—in a nonnegligible

way. Moreover, a valid IV must satisfy the exclusion restriction, i.e., the instrument must

be uncorrelated with workplace safety except through its effect on air pollution.

This paper adopts the IV strategy and leverages exogenous variations of PM2.5 and

ozone driven by atmospheric temperature inversions. As previously discussed, atmo-

spheric temperature inversion is a commonly-used IV for air pollution in the environmen-

tal literature. It is an arguably plausible IV for the workplace accident outcomes for several

reasons. First, there is a strong correlation between temperature inversion episodes and

air pollution. To illustrate that temperature inversion episodes are correlated to PM2.5

and ozone pollution, I conduct a first-stage analysis, separately regressing the two air

pollution variables, PM2.5 and ozone, on temperature inversions measured at 925hPa and
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950hPa pressure levels. The estimation model consists of a full set of controls and fixed

effects (as fully described below), accounting for time- and location-specific confound-

ing factors and the impact of other weather conditions. Table 2 presents the estimation

results. It shows that there is a strong and statistically significant correlation between

temperature inversions and PM2.5 (which are positively correlated), and between temper-

ature inversions and ozone (a negative correlation ).10 For instance, a one degree Celsius

temperature difference at the 950 hPa pressure level is estimated to increase the daily

PM2.5 level by 0.83 𝜇𝑔/𝑚3, which is equivalent to a 10% increase relative to the sample

mean. In addition, given the sizable F statistics, I conclude that there is no evidence of

weak instruments. Second, the atmospheric temperature inversion is a meteorological

phenomenon occurred in the high altitude, and hence unlikely to directly affect economic

activities and workplace safety. Moreover, since temperature inversion episodes are not

near-surface phenomena, they are generally invisible to individuals who live and work on

the Earth’s surface. Consequently, employers and employees will not respond to temper-

ature inversions by adjusting work schedules and intertemporal labor supply, which can

indirectly affect workplace accidents and injuries. Hence, it is plausible to assume that the

temperature inversion can only affect workplace accidents through its effect on air pol-

lution, and the exclusion restriction is satisfied. Taken together, this paper leverages the

exogenous and sizable—large enough to induce subclinical symptoms affecting physical

and cognitive functioning—daily variations of PM2.5 and ozone driven by temperature

inversion episodes to identify the causal impact of air pollution on workplace accident

and injury rates.

Given that the temperature inversion can serve as a valid IV, I adopt a two-stage least

squares (2SLS) model, employing the two continuous temperature inversion variables, as

10The negative correlation between temperature inversions and ozone is not an uncommon finding in the
related literature. For example, Sager (2019) finds a negative correlation between temperature inversions
and ozone levels using data from the United Kingdom.
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described in Section 3, as IVs for air pollution. Specifically, I estimate the following model:

𝑌𝑧𝑑𝑦 = 𝛽 𝑓 (𝑋𝑧𝑑𝑦)+𝜏W𝑧𝑑𝑦 + 𝜎𝑧 + 𝛿𝑐𝑦 +𝜌𝑦𝑚 + 𝜁𝑧𝑦 +𝜓𝑘 + 𝜀𝑧𝑑𝑦 (1)

where 𝑧, 𝑐, 𝑑, and 𝑦 denote ZIP-code, county, day, and year, respectively. 𝑚 and 𝑘 represent

month and day of week, respectively. 𝑌𝑧𝑑𝑦 represents either the WC claim rate per 1,000,000

population or the accident rate per 1,000,000 population measured at the ZIP-code 𝑧, day

𝑑, and year 𝑦 level. Considering that the impact of air pollution may exhibit a non-linear

feature, I specify the air pollution variable 𝑋𝑧𝑑𝑦 (PM2.5 or ozone) in polynomial form.11

𝑊𝑧𝑑𝑦 denotes a vector of weather covariates. For contemporaneous weather conditions,

I control for daily maximum, minimum, and mean temperatures, a binary indicator of

precipitation, and the polynomials of daily accumulative precipitation. To further account

for time- and location-specific confounding factors, I control for a rich set of fixed effect

in Equation (1). The preferred model includes 5-digit ZIP code (𝜎𝑧), county by year (𝛿𝑐𝑦),

ZIP-code by year (𝜁𝑧𝑦 , month by year (𝜌𝑦𝑚), and day of week (𝜓𝑘) fixed effects. The day of

week and month by year fixed effects partial out seasonal variations of workplace injury

rates, differences in rates between weekdays and weekend, and other aggregate statewide

shocks. ZIP code fixed effects controls for time-invariant confounding factors that are

specific to ZIP code zones. The county by year and ZIP code by year fixed effects further

absorb time-varying (at the year level) county- and ZIP code-specific unobservables that

may affect workplace injuries.

The coefficient of interest is 𝛽. It identifies the causal effect of air pollution on workplace

injuries (measured by the WC claim rate) and accidents (measured by the accident rate),

given that the temperature inversion IVs induce exogenous (and monotonic) variations

in PM2.5 or ozone conditional on the controlled covariates and fixed effects (Imbens and

Angrist 1994).

11The results presented in the main text are based on models that use the quadratic polynomials of the air
pollution variable. It relaxes the constant effect assumption and permits the effect to vary, either increasing
or decreasing, with the level of air pollution.
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5 Empirical Results

5.1 Main Results

Based on the two temperature inversion IVs, I conduct the 2SLS estimations separately

for the PM2.5 and ozone variables. The estimation results are summarized in Table 3.

Column (1) shows that the effect of PM2.5 is not statistically distinguishable from zero

when the PM2.5 variable is specified linearly. However, after accounting for the potential

non-linear feature of the PM2.5 effect, Column (2) show a statistically significant positive

and increasing effect of PM2.5. Figure 2 presents the marginal effects of PM2.5 at 10

𝜇𝑔/𝑚3 to 36 𝜇𝑔/𝑚3. The estimated effect increases from approximately 0.8 percentage

points when PM2.5 is 12 𝜇𝑔/𝑚3 to more than 8 percentage points when PM2.5 is above

30 𝜇𝑔/𝑚3. An effect of 8 percentage points suggests that increasing PM2.5 by 1 𝜇𝑔/𝑚3

when the PM2.5 level is at 30 𝜇𝑔/𝑚3 would increase the total WC claims per 1,000,000

population by 0.08, which is equivalent to a 21% increase relative to the sample mean. This

impact is smaller at around 2% when PM2.5 pollution is at a lower level, e.g., 12 𝜇𝑔/𝑚3.

In contrast, the effect of ozone on WC claims is likely linear. Column (3) implies a

statistically positive impact of ozone. A increase of ozone by 10 ppb is found to increase

the WC claims by about 0.7 percentage points, equivalent to an increase of 1.8% relative

to the sample mean WC claims per 1 million population. Column (4) suggests that the

estimated effect does not follow a non-linear pattern.

We can interpret the estimated effects in Table 3 as the “intensive” margin impact,

i.e., the effect of PM2.5 and ozone on the number of workplace injuries conditional on the

occurrence of workplace accidents. Another dimension that is of interest is the “extensive”

margin impact, which captures how air pollution influences the likelihood of workplace

incidence. To examine the extensive margin effect, I create a binary indicator of workplace

accident that equals one if the daily number of WC claims are non-zero for each ZIP-code

zone, and reproduce Table 3 using this accident indicator. The second stage 2SLS results

are reported in Table 4. Columns (2) shows a similar non-linear impact for PM2.5. As
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shown in Figure 3, PM2.5 is estimated to increase the rate of workplace accidents by about

1.1 percentage points even when exposing to a small level of PM2.5 at 12 𝜇𝑔/𝑚3. This

effect is equivalent to a relative increase of 3% compared to the sample mean accident

rate. The effect increases substantially to 6.1 percentage points for a larger level of PM2.5

at 30 𝜇𝑔/𝑚3, which is equivalent to a percentage change of 18% relative to the sample

mean rate. Unlike the effect of PM2.5, the effect of ozone on the accident rate presents a

linear feature. Column (3) implies that increasing the ozone level by 10 ppb increases the

workplace accident rate per 1 million population by 0.5 percentage point, equivalent to an

increase of 2%.

To benchmark these estimates, we can compare them with findings from the prior

work. For example, Cabral and Dillender (2024), a contemporary work investigating the

impact of wildfire-driven PM2.5 pollution on workplace injuries using data from Texas,

found that, on average, one day of smoke coverage is associated with an increase in daily

PM2.5 level by 1.69 𝜇𝑔/𝑚3, which consequently leads to 0.165 additional injuries per

100,000 workers. This is equivalent to an effect of 0.098 additional injuries per 100,000

workers—a 17% increase relative to the sample mean rate—resulting from a 1 𝜇𝑔/𝑚3

increase in PM2.5. In this paper, the range of estimated percentage effects of general

PM2.5 pollution at different levels (i.e., pollution caused by various reasons, including

but not limited to wildfires) encompasses the estimates in Cabral and Dillender (2024).

Specifically, a 1-𝜇𝑔/𝑚3 increase in PM2.5 is found to increase the WC claim rates by 3% -

28%, depending on the PM2.5 level. Furthermore, the findings in this paper indicate that

PM2.5 and ozone, can have a similar, if not greater, impact on workplace health and safety

compared to other environmental hazards, such as heat or NO2 pollution, as well as on

safety outcomes in other settings, such as road safety. For instance, Lavy, Rachkovski, and

Yoresh (2022) found that a 10-ppb increase in NO2 pollution is associated with a 0.00004

percentage point increase in the probability of workplace accidents at construction sites

in Israel (a 25% increase relative to the sample mean rate) and a 0.03 increase in accidents

per 100,000 workers each year. Beyond that, using data from California, Park, Pankratz,
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and Behrer (2021) provided evidence that hotter temperature significantly affect health

at work: A high temperature day increases the same-day injury risk by 5%-7% relative

to the baseline mean. Additionally, Sager (2019) studied the impact of PM2.5 on road

accidents in the UK, adopting the temperature inversion IV, and found that a 1 𝜇𝑔/𝑚3

increase in PM2.5 would increase the number of vehicles involved in road accidents

by 0.8%. This effect is evaluated at the mean with average PM2.5 level at 13.2 𝜇𝑔/𝑚2.

Despite the different research settings and environmental hazards under study, which

complicates direct comparison, the estimated impacts of PM2.5 and ozone pollution in

this paper generally show similar, and even greater in certain cases, magnitudes compared

to estimates found in the literature.

Lastly, air pollution from previous days might affect today’s workplace injuries, as its

impact can last for more than a day or take time to manifest. To examine the cumulative

and lagged effects, I estimate an additional model that incorporates air pollution variables

from the previous four days and the following four days into Equation (1). Figure 4

presents the estimated marginal effects for PM2.5 and ozone. Similar to Cabral and

Dillender (2024) and Sager (2019), I do not find evidence of lagged or cumulative impact

of PM2.5 and ozone pollution.12

5.2 Heterogeneity Results

There is comprehensive evidence documenting reductions in human cognitive ability

due to exposure to air pollution. In addition, air pollution is found to be associated

12An alternative way to measure the cumulative pollution is counting the number of days with air pollution
for a certain time period. For example, I calculate the number of days when the PM2.5 level was greater
than 15 𝜇𝑔/𝑚3 and the number of days when the ozone level was greater than 100 𝜇𝑔/𝑚3 (equivalent to
approximately 51 ppb), under the WHO standard (WHO 2021), in the past 5 days and use them as the
cumulative pollution variables. I further calculate the number of days occurring temperature inversion
episodes in the past five days at pressure levels 925hPa and 950hPa as two measures of the cumulative
temperature inversion. Estimating Equation 1 including the cumulative pollution variable as an additional
treatment variable and the cumulative temperature inversion variables as additional IVs, I find a sizable
impact of the cumulative PM2.5 pollution (see Table B.1). As shown in Figure A.1, having one additional
day of PM2.5 pollution is estimated to significantly increase the claim rate, and this impact is expected to
grow as the number of pollution days increases. There is no statistically significant evidence of cumulative
or lagged effect for ozone pollution.
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with respiratory conditions, mental stress, depression, and cardiovascular conditions.

Symptoms of these conditions in the workplace qualifies for workers’ compensation and

would be recorded in the WC claim. On the other hand, injuries associated with cognitive

decline would be classified under different injury categories. Therefore, analyzing how

air pollution affects injuries of different natures can shed light on the underlying causes of

these effects. Based on the nature of injury codes in the data, I categorize claims into five

groups: 1) traumatic injuries involving amputation, fracture, crushing, etc; 2) respiratory

conditions including asthma and other respiratory disorders; 3) cardiovascular conditions

such as heart attack and vascular; 4) mental conditions including mental disorders and

mental stress; 5) other injuries. Estimating the preferred model Equation (1) separately for

claims within each group, I present in Figures 5 and 6 the estimated effects for PM2.5 and

ozone, respectively. The effects on claims of respiratory conditions, mental conditions,

and cardiovascular conditions are small and indistinguishable from zero. In contrast,

there is a significant effect on traumatic injuries and other injuries. This suggests that air

pollution influences workplace injuries primarily via its impact on cognitive ability, rather

than directly causing adverse health effects.

Using the information from WC claim records regarding the cause of injury, I further

examine whether the impact of air pollution varies across injuries caused by different

reasons Echoing the previous finding on the heterogeneous impact by the nature of the

injury, I find that the impact of air pollution is mainly driven by cognition-related causes,

such as being caught in, under, or between machinery, and fall, slip, or trip injuries,

compared to other reasons such as heat or cold exposures. Specifically, I classify the

causes of injury into three categories: 1) cognition-related self-caused injuries which are

caused by reasons such as “Caught In, Under or Between”, “Cut, Puncture, Scrape Injured

By”, “Fall, Slip or Trip”, and “Striking Against or Stepping On”; 2) cognition-related

injuries caused by others, including injuries caused by “Crash of Motor Vehicle”, “Struck

or Injured By Fellow Worker”. These are cognition-related injuries because the decline in

cognitive functions such as attention, memory, and fluid reasoning is closely associated
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with these types of accidents and injuries. For example, fall, slip, or trip injuries are

likely to caused by lack of attention, while crashes of motor vehicle are likely due to

inattention and reckless behaviors of the driver. Other causes such as “Burn or Scald –

Heat or Cold Exposures” and “Miscellaneous Causes” including gunshots and natural

disasters are classified as the third category. Figure 7 illustrates the results of PM2.5

for these three groups. For injuries associated with cognitive-related causes (both self-

caused and caused by others), the effect of PM2.5 at 10 𝜇𝑔/𝑚3 is small and statistically

indistinguishable from zero. This effect gradually increases to around 5 percentage points

at 30 𝜇𝑔/𝑚3. In contrast, for injuries caused by non-cognitive-related reasons, such as heat

or cold exposure, the estimated impact remains small and not statistically different from

zero at all PM2.5 levels. For ozone pollution, a similar pattern is found where the effect

emerges for injuries caused by cognition-related factors. As shown in Columns (1) - (3)

of Table 5, the marginal effect of ozone pollution is estimated to increase injuries caused

by cognition-related reasons by 0.03-0.04 percentage points. The corresponding effect is

essentially zero for injuries driven by other causes.

The reported claims include various types, such as those involving medical treatment

and time loss, as well as those with neither time loss nor medical treatment. Examining the

impact of air pollution by claim type sheds light on how the effects of pollution on worker

health translate into reduced productivity and economic losses. The threat of air pollution

on workplace safety would be much less concerning if the impact were concentrated on

claims without time loss. Figure 8 presents the estimated effect of PM2.5 on the two types

of claims: those with medical treatment and time loss, and those without time loss. I

find that the impact of PM2.5 is concentrated on claims with medical treatment and time

loss, while no statistically significant impact is found on claims without time loss. Table 5

exhibits a similar pattern for ozone pollution: the effect of ozone is estimated at around

0.04 percentage points on claims with medical treatment and time loss and zero on claims

with no time loss. The estimation results by claims type imply potential economic losses

in labor productivity resulting from air pollution. I attempt to quantify the monetary
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losses from increased workplace injuries associated with air pollution in Section 6.

Furthermore, to examine the spatial distribution of air pollution impacts and identify

which neighborhoods are more affected in terms of workplace safety, I categorize WC

claim injury sites into four groups based on the quartiles of the median household income

distribution. I estimate the effect of air pollution separately for each of the four groups.

Figures 9 and 10 suggest that the effects of PM2.5 and ozone decrease with increasing

income, showing no influence on workplaces in wealthier neighborhoods but significantly

higher impacts on those in poorer communities. This trend is likely influenced by the

sorting of industries that are dirtier and/or more hazardous in poorer neighborhoods. It

highlights another aspect of environmental justice: individuals are adversely affected by

environmental hazards not only depending on where they live but also where they work.

5.3 Robustness Exercises

The following section presents a number of exercises evaluating the robustness of the

main results. First, to further control for unobserved confounding factors that vary across

both counties and time (month-year), I experiment with adding county by month-year

fixed effects to the model of Equation (1). Results are reported in Table B.2 Columns

(3) and (4). Compared to the main results reported in Columns (1) and (2), controlling

for this much richer set of fixed effects produces similar estimates for both PM2.5 and

ozone. Although the estimates become marginally significant in this specification, which

adds more than 14,472 fixed effects, the results remain significant at conventional levels.

Second, in the main analyses, the robust standard errors allowing heteroskedasticity are

reported. These results are robust to different choices of standard error options. For

example, I show in Columns (5) and (6) that when standard errors are clustered at the

ZIP-code and year level, the estimates remain significant at the 1% level. In addition to

the continuous temperature inversion IV, as in Sager (2019), binary IVs that indicate the

occurrence of temperature inversion episodes at various pressure levels are employed in

the existing literature, e.g., Jans, Johansson, and Nilsson (2018) and Arceo, Hanna, and

20



Oliva (2016). Following this strand of literature, I adopt alternative temperature inversion

IVs , represented by two binary indicators signifying temperature inversion episodes at

925 hPa and 950 hPa pressure levels, and reproduce Table 3. As shown in Columns (7) and

(8), the estimation results employing the alternative IVs for PM2.5 and ozone resemble

the original estimates in the main analyses. This implies that the estimates reported in the

main text are not sensitive to the choice of IVs.

Moreover, a few studies measure WC claim rates relative to local employment.13 Here,

to gauge whether previous findings are robust to this alternative outcome variable defini-

tion, I gather county-level annual employment data from the Quarterly Census of Employ-

ment and Wages (QCEW) and construct the rate of WC claims per 1 million employees as

a new outcome variable. Columns (1) and (2) in Table B.3 present the estimation results,

regressing the new WC claim rate on PM2.5 and ozone, using the preferred model and the

two continuous temperature inversion IVs (see Table 3). I find that the estimated impacts

are of similar magnitudes in term of the percentage effect compared to those in the main

finding. For instance, Column (1) reports that the marginal effect of PM2.5 measured at

12 𝜇𝑔/𝑚2 is estimated at 1.5 percentage points, equivalent to a 1% increase relative to

the corresponding sample mean.14 The estimated impact is approximately 17 percentage

points, equivalent to a 13% increase for a higher level of PM2.5 at 30 𝜇𝑔/𝑚3. In compar-

ison, the estimated percentage effects are about 2% at 12 𝜇𝑔/𝑚3 and 21% at 30 𝜇𝑔/𝑚3 in

the previous findings.15 For ozone, the estimated percentage effects are relatively smaller

and at around 0.1% for both outcome variables.

Next, since WC claims (and claim rates) are count variables that are always above zero,

it is natural to consider a Poisson model. Columns (3) and (4) in Table B.3 report estimates

from a Poisson IV model using the same two temperature inversion IVs as in the main

analyses. Column (3) shows that based on the Poisson IV model, the estimated incidence

13For example, Cabral and Dillender (2024) studied an outcome variable defined as the WC claims per
100,000 employees, and Lavy, Rachkovski, and Yoresh (2022) examined the number of accident per 100,000
workers.
14The sample mean of WC claims per 1 million employment is 1.38.
15The 8% difference in the estimated percentage effect for PM2.5 at 30 𝜇𝑔/𝑚3 is not statistically different

from zero.
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rate ratio is 1.0011 at 12 𝜇𝑔/𝑚3. It indicates that a one unit increase in PM2.5 at 12 𝜇𝑔/𝑚3

is associated with a 0.11 percentage points increase in the WC claim rate, which is slightly

smaller than the number in the previous finding. The effect becomes greater at around

21% (8 percentage points) for a higher level of PM2.5 (30 𝜇𝑔/𝑚3), essentially the same as

the previous estimate. As shown in Column (4), the Poisson IV model finds a greater effect

compared to the result in Table 3. The estimate is around 0.4 percentage points, which is

equivalent to a percentage impact of 1%. The difference between the estimates from the

Poisson IV model and the 2SLS is statistically different from zero. This suggests that the

2SLS model may underestimate the impact of ozone pollution, providing a lower bound

of the effect.

Furthermore, by adding PM2.5 or ozone observed 1 to 4 days ahead of the correspond-

ing WC claim day to control for future air pollution, I show in Figure 4 that there is no effect

of future air pollution (lead 1-4 days) on WC claims. Beyond that, I conduct a placebo test,

randomly shuffling either the outcome variable or the air pollution variables separately

and re-estimating Equation (1). Table B.4 reports the estimation results. In general, the

estimates are statistically indistinguishable from zero, reinforcing the conclusion that the

main findings of this paper imply causality and are not due to coincidence.

6 The Cost of Air Pollution

Workplace injuries are costly to not only injured workers and their families, but also

employers and the society. The direct costs of workplace accidents and injuries include

workers’ compensation payments and medical expenses. In addition to these direct costs,

employers also incur indirect expenses, such as repairing damaged equipment and prop-

erty, training replacement employees, and conducting accident investigation and imple-

menting of corrective measures. Serious, nonfatal workplace injuries are estimated to cost

U.S. businesses more than one billion dollars a week for medical and lost-wage expenses

in 2018 (Workplace Safety Index 2021). Workers’ compensation benefits paid, along with

the productivity loss and medical expenses incurred because of work-related deaths and
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injuries cost the American society more than 234 billion dollars in 2018 (National Safety

Council; Weiss, Murphy, and Boden 2020). For workers, severe injuries that involve hos-

pitalization and amputation usually result in work loss that ranges from days to weeks

and even cause disabilities that would limit workers’ ability to work in the future.

To quantify the monetary cost of the effect of air pollution on workplace injuries, I

provide a back-of-the-envelope calculation of the air-pollution-driven changes in workers’

compensation benefits paid based on the estimated effects. Specifically, previous analyses

show that a 10-ppb increase in ozone is associated with an increase in WC claims per

1 million population by 0.007, while the effect of a 10-𝜇𝑔/𝑚3 increase in PM2.5 ranges

from 0.08 (at 12 𝜇𝑔/𝑚3) to 1.10 (at 36 𝜇𝑔/𝑚3) per 1 million population. According to

the assessment of the National Safety Council, the average cost of workers’ compensation

claims was $42,008 in 2018-2019.16 Based on this statistics, the impact of a single-day

1-𝜇𝑔/𝑚3 increase of PM2.5 on workers’ compensation costs per claim ranges from $330 to

$4616 per 1 million population (See Table 6). The impact resulting from ozone pollution

is similar to the effect of one unit increase of PM2.5, with a single-day increase of 10-ppb

associated with an increase in WC costs of about $300 per 1 million population.

Furthermore, consider a scenario where a ZIP code zone experiences permanent air

quality deterioration, such as the daily PM2.5 level increasing by 1 𝜇𝑔/𝑚3 throughout the

year. This marginal change in PM2.5 pollution can lead to substantial costs for workers’

compensation, ranging from around 0.1 million dollars per 1 million population for a re-

gion with mild PM2.5 pollution (12 𝜇𝑔/𝑚3) to more than 1.6 million dollars per 1 million

population for a region with more severe PM2.5 level (36 𝜇𝑔/𝑚3). This assessment can

be easily extended to the whole state of Florida and extrapolate to pollution at greater

levels. For instance, consider a statewide shock that leads to a sharp increase in the

daily air pollution level by, for example, 10 𝜇𝑔/𝑚3.17 Such uniform single-day increases

in PM2.5 pollution across the state are estimated to result in 247 additional injuries per

1 million population and cost workers’ compensation more than $0.2 billion dollars in

16Source: NSC Injury Facts, https://injuryfacts.nsc.org/work/costs/workers-compensation-costs/.
17This could be driven by catastrophic natural disasters such as wildfire.
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total.18 The actual impact on workers’ compensation associated with air pollution can be

significantly higher than the above assessment due to several reasons. First, although the

WC insurance program is mandatory in Florida, WC claims do not necessarily cover all

workplace injuries. Therefore, the estimated impact on workplace injuries may be under-

stated. Second, air quality deterioration episodes usually occur periodically and last for

multiple days. Evaluations based on a single-day air quality change likely underestimate

the impact. Lastly, in some hot-spot regions, where higher PM2.5 levels have been ob-

served, the impact of PM2.5 is significantly higher than the estimate used in the previous

assessments. Thus, these regions should anticipate a considerably greater increase in

workers’ compensation costs. In summary, the previously discussed estimates of the costs

of air pollution on workers’ compensation should be interpreted with caution and can be

recognized as the lower bound of the actual impact.

7 Conclusion

This paper investigates whether air pollution, in particular, PM2.5 and ozone, impairs

worker health and workplace safety, using comprehensive administrative data on work-

ers’ compensation claims from Florida. Containing the precise information on location

and date of occurred workplace injuries, the WC claim data allows researchers to link it to

air pollution and climate data measured at a finer geographical area, reducing the mea-

surement error. Adopt an instrumental variable method and an arguably valid instrument

that satisfies both the exclusion restriction and the monotonicity assumption, I leverage

plausibly exogenous variations in air pollution driven by atmospheric temperature inver-

sion episodes to identify the causal impact. A rich set of fixed effects is included in the

preferred model to absorb location-specific and temporal variations and further control

18Costs = 0.0164×10 𝜇𝑔/𝑚3 ×$42008×1506 ZIP code zones ×21.73 = $225,455,353.14. This assessment is
based on the estimate measured at 14 𝜇𝑔/𝑚3 and Florida’s total population (21.73 million) from the 2020
Census. As shown in the Appendix Figure A.2 which presents the share of days with PM2.5 above 15 𝜇𝑔/𝑚2

from 2002 to 2019, each ZIP code zone has been observed to experience at least 6% of days (394 days) with
PM2.5 levels above 𝜇𝑔/𝑚2. Therefore, I adopt the effect evaluated at 14 𝜇𝑔/𝑚2 as a proxy. Intuitively, one
can imagine the increase of 10 𝜇𝑔/𝑚2 occurring on a day with a PM2.5 level of 14 𝜇𝑔/𝑚2.
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for time-varying unobservables.

I find that air pollution, especially PM2.5, significantly increase workplace injuries.

The estimated effects exhibit a non-linear pattern, with the impact increasing with rising

pollution levels. Specifically, a one-unit increase in PM2.5 at 12 𝜇𝑔/𝑚3 is associated with

an increase in WC claims per 1 million population by 0.8 percentage points (equivalent

to a 2% increase relative to the sample mean claim rate), while this effect is estimated

to be approximately 8 percentage points, equivalent to a 21% increase, when PM2.5 at

30 𝜇𝑔/𝑚3. The effect of ozone pollution is linear and relatively smaller compared to the

effect of PM2.5. A 10-ppb increase in ozone is found to increase WC claims per 1 million

population by 0.7 percentage points, equivalent to an increase of around 2% relative to

the baseline sample mean. Including additional controls for air pollution lags, I find

no evidence of lagged or cumulative impacts, indicating that the estimated effects are

primarily driven by acute exposure.

These findings add to the emerging literature on the so-called “non-health” effects

of environmental hazards and studies on air pollution and workplace safety broadly.

This study demonstrates that, beyond affecting worker productivity—typically measured

by wages and piece-rate outputs—and game performance as previously reported, air

pollution can also influence workers’ on-the-job performance and increase the risk of

workplace injuries. These contemporaneous effects on injury risk can be far-reaching, with

prolonged or long-term implications for lifetime productivity and future work capacity.

Pathophysiological studies show strong evidence that PM2.5 and ozone exposures af-

fect human physical and cognitive functioning and lead to acute health events or subclin-

ical symptoms, depending on the extent of exposure. Consequently, declines in physical

and cognitive ability likely affect workers’ on-the-job performance, thus increasing the

risk of workplace injuries. In line with this hypothesis, by analyzing the different impacts

across injury categories defined by their nature and cause, I find that the impact of PM2.5

and ozone is concentrated on traumatic injuries rather than respiratory, cardiovascular, or

mental conditions. Additionally, these pollutants are more associated with injuries caused
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by cognitive-related issues such as falls, slips, cuts, and being caught in machinery, rather

than other causes such as burns, scalds, gunshots, or natural disasters. These findings shed

important light on the mechanisms behind the estimated effects: air pollution-associated

reductions in physical and cognitive functions are likely the driving force contributing to

the increased injury risks. This is the same force behind the impacts of environmental

hazards on various “non-health” outcomes, as documented in prior work. This paper

thus illustrates that the same biological channel also influences workplace injuries and

worker productivity.

Furthermore, the back-of-the-envelope calculation in Section 6 suggests a sizable im-

pact on workers’ compensation costs associated with even a one-unit increase in ambient

air pollution. The induced costs are particularly greater for PM2.5 compared to ozone pol-

lution, and are sizable even for pollution levels below the current regulatory standards.

Taken together, the above findings have important policy implications. First, these

findings suggest that improving air quality can potentially benefit both employers and

employees, likely reducing labor productivity loss and both the direct and indirect costs

of work-related injuries. It calls for caution in the benefit and cost evaluation of environ-

mental policies. Without considering the likely gains from improving workplace safety,

the benefits of environmental policies that intend to improve air quality, whether outdoor

or indoor, are likely to be underestimated. Second, echoing policy discussions on whether

to strengthen the EPA’s National Ambient Air Quality Standards (NAAQS) for Particulate

Matter (PM), the substantial impacts of daily ambient PM2.5 at levels below the EPA’s

regulatory standards found in this study support the suggestion to further reduce the

24-hour NAAQS standards.19 Lastly, this paper provides rigorous evidence of the adverse

impacts of PM2.5 and ozone on worker health and workplace safety. By demonstrating

the extensive harms of air pollution, it informs OSHA’s policies targeting worker exposure

to air pollution and promotes a thorough evaluation of optimal regulatory measures to

19On February 7, 2024, EPA changed the annual PM2.5 standard from 12 𝜇𝑔/𝑚3 to 9 𝜇𝑔/𝑚3, while retained
the 24-hour PM2.5 standard at 35 𝜇𝑔/𝑚3. Source: https://www.epa.gov/pm-pollution/final-reconsidera
tion-national-ambient-air-quality-standards-particulate-matter-pm.
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mitigate associated risks. In particular, the greater impacts found at higher PM2.5 levels

and in poorer neighborhoods, along with the heterogeneous effects across PM2.5 and

ozone, imply potential benefits in allocating limited regulatory resources towards these

hot-spot regions and specific air pollutants, such as PM2.5.
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Figure 1: WC Claims, 2001-2019
Notes: This figure plots the total number of workers’ compensation claims from 2001 to 2019
across Florida’s 5-digit ZIP code zones.
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Figure 2: 2SLS Intensive Margin Effects, PM2.5
Notes: This figure reports the estimated marginal effect and its 95% confidence intervals for
PM2.5 levels spanning from 10 𝜇𝑔/𝑚3 to 36 𝜇𝑔/𝑚3 on the WC claim rate. The estimation model
includes controls for ZIP code, county-year, ZIP code-year, year-month, and day of week fixed
effects, as well as time-varying weather covariates.
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Figure 3: 2SLS Extensive Margin Effects, PM2.5
Notes: This figure reports the estimated marginal effect and its 95% confidence intervals for
PM2.5 levels spanning from 10 𝜇𝑔/𝑚3 to 36 𝜇𝑔/𝑚3 on the binary variable indicating workplace
injuries. The estimation model includes controls for ZIP code, county-year, ZIP code-year, year-
month, and day of week fixed effects, as well as time-varying weather covariates.
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Figure 4: 2SLS Lagged Effects
Notes: This figure presents the estimated marginal effects of PM2.5 and ozone on the WC claim
rate, along with their 95% confidence intervals. The estimation model incorporates air pollution
variables measured over four lag periods and four lead periods. The marginal effect of PM2.5
during the zero period is evaluated at 30 𝜇𝑔/𝑚3. The model accounts for fixed effects by ZIP code,
county-year, ZIP code-year, year-month, and day of the week, as well as time-varying weather
covariates.
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Figure 5: Heterogeneity by Nature of Injury, PM2.5
Notes: This figure reports the estimated marginal effect and its 95% confidence intervals for
PM2.5 levels spanning from 10 𝜇𝑔/𝑚3 to 36 𝜇𝑔/𝑚3 on the WC claim rate by the nature of injury.
WC claims are categorized into five groups based on the nature of injury codes: 1) traumatic
injuries involving amputation, fracture, crushing, etc; 2) respiratory conditions including asthma
and other respiratory disorders; 3) cardiovascular conditions such as heart attack and vascular;
4) mental conditions including mental disorders and mental stress; 5) other injuries.
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Figure 6: Heterogeneity by Nature of Injury, Ozone
Notes: This figure reports the estimated marginal effect and its 95% confidence intervals for
ozone pollution on the WC claim rate by the nature of injury. WC claims are categorized into five
groups based on the nature of injury codes: 1) traumatic injuries involving amputation, fracture,
crushing, etc; 2) respiratory conditions including asthma and other respiratory disorders; 3)
cardiovascular conditions such as heart attack and vascular; 4) mental conditions including
mental disorders and mental stress; 5) other injuries.
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Figure 7: Heterogeneity by Cause of Injury, PM2.5
Notes: This figure reports the estimated marginal effect and its 95% confidence intervals for
PM2.5 levels spanning from 10 𝜇𝑔/𝑚3 to 36 𝜇𝑔/𝑚3 on the WC claim rate by the cause of injury. I
classify the causes of injury into three categories: 1) Cognition-related self-caused injuries which
are caused by reasons such as “Caught In, Under or Between”, “Cut, Puncture, Scrape Injured
By”, “Fall, Slip or Trip”, and “Striking Against or Stepping On”. 2) Cognition-related injuries
caused by others, including injuries caused by “Crash of Motor Vehicle”, “Struck or Injured By
Fellow Worker”. These are cognition-related injuries because the decline in cognitive functions
such as attention, memory, and fluid reasoning is closely associated with these types of accidents
and injuries. For example, fall, slip, or trip injuries are likely to caused by lack of attention, while
crashes of motor vehicle are likely due to inattention and reckless behaviors of the driver. 3)
Other causes such as “Burn or Scald – Heat or Cold Exposures” and “Miscellaneous Causes”
including gunshots and natural disasters are classified as the third category.
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Figure 8: Heterogeneity by Claim Type, PM2.5
Notes: This figure reports the estimated marginal effect and its 95% confidence intervals for
PM2.5 levels spanning from 10 𝜇𝑔/𝑚3 to 36 𝜇𝑔/𝑚3 on the WC claim rate by the claim type. WC
claims are grouped into two categories: 1) claims with medical treatment and time loss, and 2)
claims without medical treatment or time loss.

43



−.2

0

.2

.4

.6

M
a

rg
in

a
l 
E

ff
e

c
t

Bottom 25% 25%−50% 50%−75% Top 25%

Income Distribution

Figure 9: Heterogeneity by Spatial Income Distribution, PM2.5
Notes: This figure illustrates the estimated marginal effect of PM2.5, evaluated at 30 𝜇𝑔/𝑚3, along
with its 95% confidence intervals, on the WC claim rate across neighborhood groups classified
by income distribution. WC claim injury sites are divided into four groups based on quartiles of
the median household income distribution.
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Figure 10: Heterogeneity by Spatial Income Distribution, Ozone
Notes: This figure illustrates the estimated marginal effect of ozone, along with its 95% confidence
intervals, on the WC claim rate across neighborhood groups classified by income distribution.
WC claim injury sites are divided into four groups based on quartiles of the median household
income distribution.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)

N Mean Std. Min Max

Workplace Safety
WC Total Claims 10450134 0.12 0.42 0 96
WC Total Claims per 1,000,000 Population 10450134 0.39 3.24 0 886
Any Accident 10450134 0.10 0.30 0 1
Any Accident per 1,000,000 Population 10450134 0.34 2.85 0 142

Air Pollution
Ozone (ppb) 9900444 37.63 11.13 2 102
PM2.5 (𝜇𝑔/𝑚3) 9900444 8.14 3.75 0 125

Weather
Daily Precipitation (mm/day) 10450134 3.93 9.84 0 446
Any Precipitation 10450134 0.55 0.50 0 1
Maximum Temperature (◦C) 10450134 27.87 5.31 -3 41
Minimum Temperature (◦C) 10450134 17.01 6.83 -10 32
Mean Temperature (◦C) 10450134 22.55 5.80 -6 33
Temperature Inversion (@925hPa) 9964021 -2.58 1.28 -5 11
Temperature Inversion (@950hPa) 9964021 -1.33 0.70 -3 7
Any Temperature Inversion (@925hPa) 9964021 0.04 0.20 0 1
Any Temperature Inversion (@950hPa) 9964021 0.04 0.20 0 1

Notes: This table reports the summary statistics for the analysis sample.
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Table 2: First Stage Results

(1) (2) (3) (4)

PM2.5 Ozone

Temperature Inversions (@925hPa) 0.3344*** -0.8618***
(0.0009) (0.0025)

Temperature Inversions (@950hPa) 0.8304*** -0.7619***
(0.0017) (0.0048)

N 9439881 9439881 9439881 9439881
F-Stats 121733 265 96755 14406
R2 0.31 0.32 0.48 0.47

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. The estimation adopts the
preferred model with ZIP code, county-year, ZIP code-year, year-month, and day of week fixed effects, as
well as weather covariates. First-stage Kleibergen-Paap F statistics are reported.
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Table 3: Second Stage 2SLS Regression Results, Intensive Margin

(1) (2) (3) (4)

Outcome: WC Total Claims per 1,000,000 Population

PM2.5 -0.0007 -0.0432***
(0.0005) (0.0131)

PM2.52 0.0021***
(0.0007)

Ozone 0.0007*** 0.0025
(0.0002) (0.0020)

Ozone2 -0.00002
(0.00003)

N 9439881 9439881 9439881 9439881
First Stage F-Stats 121733 265 96755 14406

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. Standard errors are
weighted by population. The estimation adopts the preferred model with ZIP code, county-year, ZIP code-
year, year-month, and day of week fixed effects, as well as weather covariates. First-stage Kleibergen-Paap
F statistics are reported.
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Table 4: Second Stage 2SLS Regression Results, Extensive Margin

(1) (2) (3) (4)

Outcome: Any Accident per 1,000,000 Population

PM2.5 -0.0007 -0.0316***
(0.0004) (0.0107)

PM2.52 0.0016***
(0.0005)

Ozone 0.0005*** 0.0023
(0.0002) (0.0016)

Ozone2 -0.00002
(0.00002)

N 9439881 9439881 9439881 9439881
First Stage F-Stats 121733 265 96755 14406

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. Standard errors are
weighted by population. The estimation adopts the preferred model with ZIP code, county-year, ZIP code-
year, year-month, and day of week fixed effects, as well as weather covariates. First-stage Kleibergen-Paap
F statistics are reported.
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Table 5: Heterogeneity Results, Ozone

(1) (2) (3) (4) (5)

Outcome: WC Total Claims per 1,000,000 Population

By Cause of Injury By Claim Type

Cognition-Related Other Causes Medical+ No Time Loss

Self-Caused Caused By
Others

Ozone 0.0004** 0.0003*** 0.0000 0.0004** 0.0000
(0.0002) (0.0001) (0.00003) (0.0002) (0.0000)

N 9439881 9439881 9439881 9439881 9439881

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. Standard errors are
weighted by population. The estimation adopts the preferred model with ZIP code, county-year, ZIP code-
year, year-month, and day of week fixed effects, as well as weather covariates. First-stage Kleibergen-Paap
F statistics are reported. “Medical+” denotes claims involving medical treatment and time loss.
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Table 6: Estimation of Workers’ Compensation Costs

(1) (2) (3) (4)

Pollutant Type Estimates Unit(s) of Change Expenses per
Claim

Increased Costs
per Claim

PM2.5 (𝜇𝑔/𝑚3) @

12 0.00786 1 42008 330.18288
14 0.01636 1 42008 687.25088
16 0.02486 1 42008 1044.31888
18 0.03336 1 42008 1401.38688
20 0.04187 1 42008 1758.87496
22 0.05037 1 42008 2115.94296
24 0.05887 1 42008 2473.01096
26 0.06737 1 42008 2830.07896
28 0.07587 1 42008 3187.14696
30 0.08437 1 42008 3544.21496
32 0.09288 1 42008 3901.70304
34 0.10138 1 42008 4258.77104
36 0.10988 1 42008 4615.83904

Ozone (ppb)

- 0.00073 10 42008 306.6584

Notes: This table presents a back-of-the-envelope calculation of the impact of a single-day increase in PM2.5
(by 1 𝜇𝑔/𝑚3) and ozone (by 10 ppb) on workers’ compensation costs per claim. The cost per claim is derived
from the National Safety Council’s evaluation of the average workers’ compensation claim expenses for
2018-2019. Estimates of the marginal effect of PM2.5 and ozone are based on the results in Table 3 Columns
(2) and (3), respectively.
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A.1: 2SLS Cumulative Effects
Notes: This figure reports the estimated marginal effects and their 95% confidence intervals for
the number of PM2.5 and ozone pollution days over the past five days on the WC claim rate,
based on the estimates in Appendix Table B.1.
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A.2: The Share of PM2.5 Pollution Days, 2002-2019
Notes: This figure displays the spatial distribution of the share of PM2.5 pollution days from
2001 to 2019 across Florida’s 5-digit ZIP code zones, based on the WHO standard where PM2.5
levels exceed 15 𝜇𝑔/𝑚3. The darker the color, the higher the frequency of PM2.5 pollution days.
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A.3: The Share of Ozone Pollution Days, 2002-2019
Notes: This figure displays the spatial distribution of the share of ozone pollution days from 2001
to 2019 across Florida’s 5-digit ZIP code zones, based on the WHO standard where ozone levels
exceed 51 ppb. The darker the color, the higher the frequency of ozone pollution days.
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B Tables

B.1: Cumulative Exposure Results

(1) (2)

Outcome: WC Total Claims per 1,000,000 Population

PM2.5 -0.03900***
(0.01490)

PM2.52 0.00185**
(0.00075)

# of PM2.5 Exposure Past 5 Days -0.97681***
(0.28486)

# of PM2.5 Exposure Past 5 Days2 0.42639***
(0.13370)

Ozone 0.00105***
(0.00032)

# of Ozone Exposure Past 5 Days -0.00285
(0.01461)

N 9439881 9439881

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. Standard errors are
weighted by population. This table presents the estimation results using an alternative method to measure
cumulative pollution, specifically by counting the number of days with air pollution over the past five days.
A PM2.5 pollution day is defined as a day when the PM2.5 level exceeds 15 𝜇𝑔/𝑚3, while an ozone pollution
day is defined as a day when the ozone level exceeds 100 µg/m3 (approximately 51 ppb), according to the
WHO standard (WHO 2021). The model incorporates fixed effects for ZIP code, county-year, ZIP code-year,
year-month, and day of the week. It also accounts for spontaneous air pollution and time-varying weather
covariates.
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B.2: Robustness Results (1/3)

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: WC Total Claims per 100,000 Employment

Original Results Additional FEs Alternative Clustering Level Alternative IVs

PM2.5 -0.0316*** -0.0227* -0.0432*** -0.0363***
(0.0107) (0.0134) (0.0084) (0.0071)

PM2.52 0.0016*** 0.0011* 0.0021*** 0.0018***
(0.0005) (0.0007) (0.0004) (0.0004)

Ozone 0.0005*** 0.0004* 0.0007*** 0.0008***
(0.0002) (0.0002) (0.0001) (0.0001)

First Stage F-Stats 265 96755 269.05 85869.18 265.84 97006.13 196.03 49939.56
N 9439881 9439881 9439881 9439881 9439881 9439881 9439881 9439881

Cty-Month-Year FE ✓ ✓
Two-way Clustering ✓ ✓
Binary IVs ✓ ✓

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. Standard errors are weighted by population. This table
summarizes the results of the robustness check. Columns (1) and (2) display the original results from the main text for comparison. Columns (3)
and (4) provide estimates from a model that adds county-by-month-year fixed effects to the model in Equation (1). Columns (5) and (6) present
standard errors clustered at the ZIP code and year levels. The final two columns report estimates using two binary indicators for temperature
inversion episodes at the 925 hPa and 950 hPa pressure levels as alternative instrumental variables for PM2.5 and ozone.
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B.3: Robustness Results (2/3)

(1) (2) (3) (4)

Outcome: WC Total Claims per 1,000,000 Employment Outcome: WC Total Claims per 1,000,000 Population

2SLS Model Poisson IV Model

PM2.5 -0.0909** -0.0507***
(0.0357) (0.0143)

PM2.52 0.0044** 0.0022***
(0.0018) (0.0008)

Ozone 0.0016*** 0.0043***
(0.0006) (0.0010)

First Stage F-Stats 274.45 94878.28 274.45 94878.28
N 9439881 9439881 9439881 9439881
Incidence Rate Ratio 1.0011(@12), 1.0836(@30) 1.0043

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. The estimation adopts the preferred model with ZIP code,
county-year, ZIP code-year, year-month, and day of week fixed effects, as well as weather covariates. Columns (1) and (2) display the estimation
results using the workers’ compensation claim rate relative to local employment as the outcome. County-level annual employment data is
collected from the Quarterly Census of Employment and Wages (QCEW). Columns (3) and (4) report the estimates and the incidence rate ratios
from a Poisson IV model.
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B.4: Robustness Results (3/3)

(1) (2) (3) (4)

Shuffled Outcome Shuffled Treatment

PM2.5 0.03623 -0.03058
(0.05667) (0.05026)

PM2.52 -0.00182 0.00138
(0.00284) (0.00252)

Ozone -0.00057 0.00066
(0.00091) (0.00081)

N 9439881 9439881 9439881 9439881

Notes: Robust standard errors in parentheses. * 𝑝 < 0.10 ** 𝑝 < 0.05 *** 𝑝 < 0.01. This table presents the results of a placebo test, randomly shuffling
either the outcome variable (as shown in Columns 1 and 2) or the air pollution variables (see Columns 3 and 4) separately and re-estimating
Equation (1). The estimation adopts the preferred model with ZIP code, county-year, ZIP code-year, year-month, and day of week fixed effects,
as well as weather covariates.
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